Photocatalytic Activity of Sol-Gel Derived Bi2O3-TiO2 Nanocomposite

Article Preview

Abstract:

Bi2O3-TiO2 nanocomposites were obtained by sol-gel method using tween 80 (T-80) or polyvinyl pyrrolidone-polyethylene glycol (PVP-PEG) as templating agent. The powder X-ray diffraction (XRD) patterns of both the composites reveal the crystal structure of Bi2O3 as primitive tetragonal and TiO2 is in anatase phase. The energy dispersive X-ray (EDX) spectra provide the composition of Bi2O3 in Bi2O3-TiO2 (T-80) and Bi2O3-TiO2 (PVP-PEG) as 3.8 and 20.4 mol. %, respectively. The average crystallite sizes of Bi2O3-TiO2 (T-80) and Bi2O3-TiO2 (PVP-PEG), derived from XRD, are 9 and 17 nm, respectively. The scanning electron microscopic (SEM) images show the spherical shape of Bi2O3-TiO2 (T-80) and the composites are polycrystalline. The diffuse reflectance spectra (DRS) of the composites display faint absorption of visible light and strong absorption in UV-A region. The photoluminescence (PL) spectra of both the composites are similar and the observed near band gap emission (NBE) and deep level emission (DLE) agree with those of TiO2. The impedance spectra show that the charge-transfer resistances of the composites do not differ significantly. The visible light photoimpedance spectra display the photoconductance of Bi2O3-TiO2 (PVP-PEG) but not that of Bi2O3-TiO2 (T-80). Although the visible light-photocatalytic activities of the two nanocomposites to degrade dye do not differ significantly Bi2O3-TiO2 (T-80) under UV-A light degrades dyes faster than Bi2O3-TiO2 (PVP-PEG).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-83

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[2] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Structural and optical characteristics of bismuth oxide thin films, Surf. Sci. 507-510 (2002) 480-485.

DOI: 10.1016/s0039-6028(02)01289-x

Google Scholar

[3] J. Xu, M. Chen, D. Fu, Preparation of bismuth oxide/titania composite particles and their photocatalytic activity to degradation of 4-chlorophenol, T. Nonferr. Metal. Soc. 21 (2011) 340-345.

DOI: 10.1016/s1003-6326(11)60719-x

Google Scholar

[4] J. Yu, S. Liu, Z. Xiu, W. Yu, G. Feng, Combustion synthesis and photocatalytic activities of Bi3+-doped TiO2 nanocrystals, J. Alloys Compds. 461 (2008) L17-L19.

DOI: 10.1016/j.jallcom.2007.07.095

Google Scholar

[5] J. Wang, L. Jing, L. Xue, Y. Qu, H. Fu, Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution, J. Hazard. Mater. 160 (2008) 208-212.

DOI: 10.1016/j.jhazmat.2008.02.103

Google Scholar

[6] Y. Wu, G. Lu, S. Li, The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of rhodamine B, J. Phys. Chem. C 113 (2009) 9950-9955.

DOI: 10.1021/jp9009433

Google Scholar

[7] J. Xu, Y. Ao, D. Fu, C. Yuan, Synthesis of Bi2O3-TiO2 composite film with high-photocatalytic activity under sunlight irradiation, Appl. Surf. Sci. 255 (2008) 2365-2369.

DOI: 10.1016/j.apsusc.2008.07.095

Google Scholar

[8] P. A. K. Reddy, B. Srinivas, P. Kala, V. D. Kumari, M. Subrahmanyam, Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide, Mater. Res. Bull. doi: 10. 1016/j. materresbull. 2011. 08. 006.

DOI: 10.1016/j.materresbull.2011.08.006

Google Scholar

[9] S. Murcia-Lopez, M. C. Hidalgo, J. A. Navio, Synthesis, characterization and photocatalytic activity of Bi-doped TiO2 photocatalysts under simulated solar irradiation, Appl. Catal. A 404 (2011) 59-67.

DOI: 10.1016/j.apcata.2011.07.008

Google Scholar

[10] Z. Bian, J. Ren, J. Zhu, S. Wang, Y. Lu, H. Li, Self-assembly of BixTi1-xO2 visible photocatalyst with core-shell structure and enhanced activity, Appl. Catal. B 89 (2009) 577-582.

DOI: 10.1016/j.apcatb.2009.01.014

Google Scholar

[11] T. Ji, F. Yang, Y. Lu, J. Zhou, J. Sun, Synthesis and visible-light photocatalytic activity of Bi-doped TiO2 nanobelts, Mater. Lett. 63 (2009) 2044-(2046).

DOI: 10.1016/j.matlet.2009.06.043

Google Scholar

[12] X. H. Xu, M. Wang, Y. Hou, W. F. Yao, D. Wang, H. Wang, Preparation and characterization of Bi-doped TiO2 photocatalyst, J. Mater. Sci. Lett. 21 (2002) 1655-1666.

Google Scholar

[13] J. Zhou, Z. Zou, A. K. Ray, X. S. Zhao, Preparation and characterization of polycrystalline bismuth titanate Bi12TiO20 and its photocatalytic properties under visible light irradiation, Ind. Eng. Chem. Res. 46 (2007) 745-749.

DOI: 10.1021/ie0613220

Google Scholar

[14] L. Yin, J. Niu, Z. Shen, J. Chen, Mechanism of reductive decomposition of pentachlorophenol by Ti-doped β-Bi2O3 under visible light irradiation, Environ. Sci. Technol. 44 (2010) 5581-5586.

DOI: 10.1021/es101006s

Google Scholar

[15] Y. Wang, Y. Wen, H. Ding, Y. Shan, Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes, J. Mater. Sci. 45 (2010) 1385-1392.

DOI: 10.1007/s10853-009-4096-1

Google Scholar

[16] L. F. Yin, J. F. Niu, Z. Y. Shen, Y. Sun, The electron structure and photocatalytic activity of Ti(IV) doped Bi2O3, Sci. China Chem. 54 (2011) 180-185.

DOI: 10.1007/s11426-010-4008-x

Google Scholar

[17] J. Zhu, S. Wang, J. Wang, D. Zhang, H. Li, Highly active and durable Bi2O3/TiO2 visible photocatalyst in flower-like spheres with surface-enriched Bi2O3 quantum dots, Appl. Catal. B 102 (2011) 120-125.

DOI: 10.1016/j.apcatb.2010.11.032

Google Scholar

[18] J. Hou, Z. Wang, S. Jiao, H. Zhu, 3D Bi12TiO20/TiO2 hierarchical heterostructure: synthesis and enhanced visible-light photocatalytic activities, J. Hazard. Mater. doi: 10. 1016/j. jhazmat. 2011. 07. 013.

DOI: 10.1016/j.jhazmat.2011.07.013

Google Scholar

[19] J. Xu, M. Chen, D. Fu, Study on highly visible light active Bi-doped TiO2 composite hollow phere, Appl. Surf. Sci. 257 (2011) 7381-7386.

DOI: 10.1016/j.apsusc.2011.02.030

Google Scholar

[20] Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, H. Li, Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase, J. Phys. Chem. C 112 (2008) 6258-6262.

DOI: 10.1021/jp800324t

Google Scholar

[21] K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media, J. Photochem. Photobiol. C 9 (2008) 15-36.

DOI: 10.1016/j.jphotochemrev.2008.09.001

Google Scholar

[22] C. Karunakaran, A. Vijayabalan, G. Manikandan, P. Gamathisankar, Visible light photocatalytic disinfection of bacteria by Cd-TiO2, Catal. Commun. 12 (2011) 826-829.

DOI: 10.1016/j.catcom.2011.01.017

Google Scholar

[23] A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamental and applications, second ed., Wiley, New York, (2000).

Google Scholar