Geometry Modelling of Clads Generated by Laser Cladding

Article Preview

Abstract:

The laser cladding process is based on the generation of a melt-pool in a substrate where a filler material is injected, generating a high quality clad with a minimum heat affected zone. This process is industrially used to generate coatings over wear or damaged surfaces, being an alternative to traditional deposition techniques. One of the most important aspects for its industrial application is to know the clad geometry in order to calculate the deposited layer thickness. This work presents a model in which, starting from the concentration of injected material and the melt-pool geometry, clad height is finally estimated. Both input variables are obtained by two previous validated models. On one hand, the melt pool is estimated by a thermal model based on the finite difference method, and on the other hand, concentration of injected material is provided by a particle concentration CFD model. This data is used in a mass balance over melt-pool area in order to estimate the deposited clad height.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Qi, M. Azer and P. Singh: Int. J. Adv. Man. Tech. Vol. 48 (2010), p.121.

Google Scholar

[2] C. Navas, A. Conde, B.J. Fernández, F. Zubiri and J. de Damborenea: Surf. & Coat. Tech. Vol. 194 (2005), p.136.

Google Scholar

[3] J.Y. Jeng, M. -Ch. Lin: J. Mater. Process. Tech. Vol. 110 (2001), p.98.

Google Scholar

[4] L. Sexton, S. Lavin, G. Byrne and A. Kennedy: J. Mater. Process. Tech. Vol. 122 (2002), p.63.

Google Scholar

[5] J. Gao, X. Chen, O. Yilmaz and N. Gindy: Int. J. Adv. Man. Tech. Vol. 36 (2008), p.1170.

Google Scholar

[6] K.H. Ritcher, S. Orban and S. Nowotny: Proceedings of ICALEO (2004).

Google Scholar

[7] L.P. Borrego, J.T.B. Pires, J.M. Costa and J.M. Ferreira: Eng. Fail. Anal. Vol. 16 (2009), p.596.

Google Scholar

[8] J. Lin and B. Ch. Hwang: Opt. & Laser Technol. Vol. 31 (1999), p.571.

Google Scholar

[9] G. Chryssolouris, S. Zannis, K. Tsirbas and C. Lalas: CIRP Anals-Man. Tech. Vol. 51 (2002), p.145.

DOI: 10.1016/s0007-8506(07)61486-3

Google Scholar

[10] C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi and A.K. Nath: Opt. Laser Technol. Vol. 39 (2007), p.800.

Google Scholar

[11] A.J. Pinkerton and L. Li: Int. J. Mach. Tool & Manu. Vol. 44 (2004), p.573.

Google Scholar

[12] J.P. Davim, C. Oliveira, A. Cardoso, Mater. & Design Vol. 29 (2008) p.554.

Google Scholar

[13] C. Lalas, K. Tsirbas, K. Salonitis and G. Chryssolouris: Int. J. Adv. Man. Tech. Vol. 32 (2007), p.34.

Google Scholar

[14] J. Liu: Opt. & Laser Technol. Vol. 39 (2007), pp.1532-1536.

Google Scholar

[15] J. Liu and L. Li: Opt. & Laser Technol. Vol. 37 (2005), pp.478-482.

Google Scholar

[16] J. Lin and B. Ch. Hwang: Opt. & Laser Technol. Vol. 33 (2001), pp.267-275.

Google Scholar

[17] I. Tabernero, A. Lamikiz, E. Ukar, L.N. López de Lacalle, C. Angulo and G. Urbikain: J. Mater. Process. Tech. Vol. 210 (2010), p.2125.

DOI: 10.1016/j.jmatprotec.2010.07.036

Google Scholar

[18] E. Ukar, A. Lamikiz, L.N. López de Lacalle, S. Martinez, F. Liebana and I. Tabernero: Phys. Proc. Vol. 5 (2010), p.395.

Google Scholar