Properties of POSS/HNBR Elastomer Nanocomposites

Article Preview

Abstract:

A series of composite materials containing polyhedral oligomeric silsesquioxanes (POSS) and hydrogenated butadiene-acrylonitrile rubber (HNBR) were prepared. The goal of the work was to evaluate the effect of the type and reactivity of functional groups in the POSS cage on properties of the resulting elastomeric nanocomposites. The paper presents some of the preliminary results obtained from the studies. The results indicate that incorporation of POSS into silica-filled HNBR elastomer network increases interfacial interactions of the systems and the POSS molecules can be successfully used as coagents of crosslinking towards the elastomer matrix and efficient additives improving the mechanical properties of elastomeric nanocomposites. Furthermore, evaluation of changes in mechanical properties, induced in a result of POSS/HNBR composites ageing, show that the inclusion of POSS in the HNBR network is directly influencing the stabilizing effect and improves the ageing resistance of elastomer composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-181

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zhao, Y. Fu and S. Liu: Polymers & Polymer Comp. Vol. 16 (2008), p.483.

Google Scholar

[2] G. Pan, J.E. Mark and D.W. Schaefer: J. Polym. Sci. Part B: Polym. Phys. Vol. 41 (2003), p.3314.

Google Scholar

[3] J.P. Lewicki, K. Pieluchowski, P. Tremblot De La Croix, B. Janowski, D. Todd and J.J. Liggat: Polym. Degrad. Stab. Vol. 95 (2010), p.1099.

Google Scholar

[4] D. Chen, S. Yi, W. Wu, Y. Zhong, J. Liao, C. Huang and W. Shi: Polymer Vol. 51 (2010), p.3867.

Google Scholar

[5] T.F. Baumann, T.V. Jones, T. Wilson, A.P. Saab and R.S. Maxwell: J. Polym. Sci. Part A: Polym. Chem. Vol. 47 (2003), p.2589.

Google Scholar

[6] Y.R. Liu, Y.D. Huang and L. Liu: J. Mater. Sci. Vol. 42 (2007), p.5544.

Google Scholar

[7] R.Y. Kannana, H.J. Salacinski, M. Odlyha, P.E. Butler and A.M. Seifalian: Biomaterials Vol. 27 (2006), p. (1971).

Google Scholar

[8] H. Liu, S. Zheng and K. Nie: Macromolec. Vol. 38 (2005), p.5088.

Google Scholar

[9] E.T. Kopesky, G.H. McKinley and R.E. Cohen: Polymer Vol. 47 (2006), p.299.

Google Scholar

[10] E. Markovic, S. Clarke, J. Matisons and G.P. Simon: Macromolec. Vol. 41 (2008), p.1685.

Google Scholar

[11] W. Tao, H. Zhou, Y. Zhang and G. Li: Appl. Surf. Sci. Vol. 254 (2008), p.2831.

Google Scholar

[12] Z. Zhou, L. Cui, Y. Zhang and N. Yin: Eur. Polym. J. Vol. 44 (2008), p.3057.

Google Scholar

[13] J.H. Chen, B.X. Yao, W.B. Su and Y.B. Yang: Polymer Vol. 48 (2007), p.1756.

Google Scholar

[14] Y. Nia, S. Zhenga and K. Nieb: Polymer Vol. 45 (2004), p.5557.

Google Scholar

[15] Y.J. Lee, S.W. Kuo, W.J. Huang, H.Y. Lee and F.C. Chang: J. Polym. Sci. Part B: Polym. Phys. Vol. 42 (2004), p.1127.

Google Scholar

[16] S.L. Zhang, Q.C. Zou and L.M. Wu: Macromolec. Mat. Eng. Vol. 291 (2006), p.895.

Google Scholar

[17] V.N. Bliznyuk, T.A. Tereshchenko, M.A. Gumenna, Y.P. Gomza, A.V. Shevchuk and N.S. Klimenko: Polymer Vol. 49 (2008), p.2298.

DOI: 10.1016/j.polymer.2008.02.044

Google Scholar

[18] S. Turri and M. Levi: Macromolec. Vol. 38 (2005), p.5569.

Google Scholar

[19] D. Chen, J. Nie, S. Yi, W. Wu, Y. Zhong, J. Liao and C. Huang: Polym. Degrad. Stab. Vol. 95 (2010), p.618.

Google Scholar

[20] P.J. Flory and J. Rehner: J. Chem. Phys. Vol. 11 (1943), p.52.

Google Scholar