The Influence of Strain on Annealing Behaviour of Heavily Rolled Aluminium AA1050

Article Preview

Abstract:

Deformation structures and annealing behaviour have been analysed in the centre layer of two AA1050 samples cold-rolled to von Mises strains of 3.6 and 6.4. During annealing at 270-300°C structural coarsening and discontinuous recrystallization occurred in both samples. In the coarsened microstructure, the fraction of high angle boundaries was slightly lower than that in the as-rolled conditions. Recrystallization textures of both samples contained significant fractions of the rolling texture components. The fraction of the retained rolling texture was however greater in the strain-6.4 sample. The {001}<310> and {110}<566> components were also pronounced in this sample. The size of recrystallized grains having orientations of the rolling texture was considerably smaller than the size of grains having other crystallographic orientations. This may be attributed to orientation pinning that hinders growth of grains with orientations of the rolling texture.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

297-302

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O.V. Mishin, D. Juul Jensen and N. Hansen, in: Aluminium Alloys – Their Physical and Mechanical Properties, edited by J. Hirsch et al., WILEY-VCH Verlag, (2008), p.1114.

Google Scholar

[2] T. Yu and N. Hansen, Mater. Sci. Forum, (2010), in press.

Google Scholar

[3] O.V. Mishin, D. Juul Jensen and N. Hansen: Metall. Mater. Trans. A, Vol. 41A (2010), p.2936.

Google Scholar

[4] Q. Liu, X. Huang, D.J. Lloyd and N. Hansen: Acta Mater., Vol. 50 (2002), p.3789.

Google Scholar

[5] O.V. Mishin, D. Juul Jensen and N. Hansen: Mater. Sci. Eng. A, Vol. 342 (2003), p.320.

Google Scholar

[6] M.Z. Quadir, O. Al-Buhamad, L. Bassman and M. Ferry: Acta Mater., Vol. 55 (2007), p.5438.

DOI: 10.1016/j.actamat.2007.06.021

Google Scholar

[7] G.H. Zahid, Y. Huang and P.B. Prangnell: Acta Mater., Vol. 57 (2009), p.3509.

Google Scholar

[8] D. Juul Jensen and N. Hansen: Metall. Trans. A, Vol. 17A (1986), p.253.

Google Scholar

[9] O. Engler, H.E. Vatne and E. Nes: Mater. Sci. Eng. A, Vol. 205 (1996), p.187.

Google Scholar

[10] O. Daaland and E. Nes: Acta Mater, Vol. 44 (1996), p.1413.

Google Scholar

[11] H.E. Vatne, O. Engler, and E. Nes: Mater. Sci. Technol., Vol. 13 (1997), p.93.

Google Scholar

[12] Q. Zeng, X. Wen, and T. Zhai: Metall. Mater. Trans A, Vol. 40A (2009), p.2488.

Google Scholar

[13] W.C. Liu, H. Yuan, and M.J. Huang: Metall. Mater. Trans A, Vol. 40A (2009), p.2794.

Google Scholar

[14] H. -E. Ekström, O.V. Mishin and R.G. Hamerton: Mater. Sci. Forum, Vols 396–402 (2002), p.575.

Google Scholar

[15] F.J. Humphreys: Acta Metall., Vol. 25 (1977), p.1323.

Google Scholar

[16] D. Juul Jensen: Acta Metall. Mater, Vol. 43 (1995), p.4117.

Google Scholar