[1]
K. Laskaris and A. Kladas, Internal Permanent magnet motor design for electric vehicle drive, IEEE Transactions on Industrial Electronics, 57 (2010) 138-145.
DOI: 10.1109/tie.2009.2033086
Google Scholar
[2]
E. M. Tsampouris and A.G. Kladas, Efficiency Optimization Considerations for Standard Induction Motor Fed by PWM Inverter, 8th International Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, Lille, France (2009) 1-6.
DOI: 10.1109/electromotion.2009.5259130
Google Scholar
[3]
K. L. Shi, T.F. Chan, Y. K. Wong, and S. L. Ho, Speed Estimation of an Induction Motor Drive using an Optimized Extended Kalman Filter, IEEE Transactions on Industrial Electronics, 49 (2002) 124-133.
DOI: 10.1109/41.982256
Google Scholar
[4]
J. Fan, C. Zhang, Z. Wang, Y. Dong, C. Nino, A. Tariq and E. Strangas, Thermal Analysis of Permanent Magnet Motor for the Electric Vehicle Application Considering Driving Duty Cycle, IEEE Transactions on Magnetics, 46 (2010) 2493-2496.
DOI: 10.1109/tmag.2010.2042043
Google Scholar
[5]
G.K. Kalokiris, A.G. Kladas, I.K. Hatzilau, S. Cofinas and I.K. Gyparis, Advances in magnetic materials and their impact on electric machine design, Fourth Japanese-Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and Nano Materials (JAPMED'4), Cairo, Egypt. Journal of Materials Processing Technology, 181 (2007) 148–152.
DOI: 10.1016/j.jmatprotec.2006.03.018
Google Scholar
[6]
M. Beniakar, T. Kefalas and A. Kladas, Investigation of the Impact of the Operational Temperature on the Performance of a Surface Permanent Magnet Motor, Materials Science Forum, 670 (2011) 259-264.
DOI: 10.4028/www.scientific.net/msf.670.259
Google Scholar
[7]
P. Rovolis, A. Kladas and J. Tegopoulos, Laminated iron core losses evaluation and measurements, Fourth Japanese-Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and Nano Materials (JAPMED'4), Cairo, Egypt, Journal of Materials Processing Technology 181 (2007) 182–185.
DOI: 10.1016/j.jmatprotec.2006.03.024
Google Scholar
[8]
A.M. El-Refaie, Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges," IEEE Transactions on Industrial Electronics, 57 (2010) 107-121.
DOI: 10.1109/tie.2009.2030211
Google Scholar
[9]
J.S. Choi and J. Yoo, Structural Topology Optimization of Magnetic Actuators Using Genetic Algorithms and on/off Sensitivity, IEEE Transactions on Magnetics, 45 (2009) 2276-2279.
DOI: 10.1109/tmag.2009.2016297
Google Scholar
[10]
E. Tsampouris, C. Patsios, A. Chaniotis, A. Kladas and J. Prousalidis, Coupled Field and Circuit Model Analysis of Permanent Magnet Synchronous Machine for Direct Torque Control Optimization, Materials Science Forum, 670 (2011) 265-272.
DOI: 10.4028/www.scientific.net/msf.670.265
Google Scholar
[11]
J. Lee, K. Nam, S. Choi, and S. Kwon, Loss-Minimizing Control of PMSM with the Use of Polynomial Approximations, IEEE Transactions on Power Electronics, 24 (2009) 1071-1082.
DOI: 10.1109/tpel.2008.2010518
Google Scholar
[12]
M.N. Uddin and S.W. Nam, New Online Loss-Minimization-Based Control of an Induction Motor Drive, IEEE Transactions on Power Electronics, 23 (2008) 926-933.
DOI: 10.1109/tpel.2007.915029
Google Scholar
[13]
J. Siahbalaee, S. Vaez-Zadeh, and F. Tahami, A New Loss Minimization Approach with Flux and Torque Ripples Reduction of Direct Torque Controlled Permanent Magnet Synchronous Motors, 13th European Conference on Power Electronics and Applications, Barcelona (2009) 1-8.
DOI: 10.1109/pedstc.2010.5471818
Google Scholar