Experimental and Theoretical Analysis of Iron Losses of Electrical Steels Subjected to Distorted Supply Voltage Waveform Conditions

Article Preview

Abstract:

Iron losses of grain-oriented electrical steels, is sensitive to the distortion of the supply voltage waveform of the excitation winding. As a result, magnetic cores of electrical machines and transformers manufactured of grain-oriented electrical steels present significant increase of iron losses when working under distorted supply voltage waveform. In the present paper, an experimental apparatus is developed in order to evaluate the effect of distorted supply voltage waveform on iron losses of grain-oriented electrical steels. Also, a theoretical analysis based on the hysteresis design tool of Matlab and the finite element method considering hysteresis is carried out.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-176

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. D. Kefalas and A. G. Kladas: IEEE Trans. Ind. Electron., Vol. 57, No. 1, (2010), p.193.

Google Scholar

[2] P. Georgilakis, N. Hatziargyriou, and D. Paparigas: IEEE Computer Applications in Power, Vol. 12, No. 4, (1999), p.41.

DOI: 10.1109/67.795137

Google Scholar

[3] P. I. Koltermann, L. A. Righi, J. P. A. Bastos, R. Carlson, N. Sadowski, and N. J. Batistela: Physica B, Vol. 275, (2000), p.233.

DOI: 10.1016/s0921-4526(99)00770-x

Google Scholar

[4] T. D. Kefalas and A. G. Kladas: IET 7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion MedPower 2010, (2010), p.1.

DOI: 10.1049/cp.2010.0894

Google Scholar

[5] T. D. Kefalas: Journal of Recent Patents on Electrical Engineering, Vol. 2, No. 1, (2009), p.1.

Google Scholar

[6] I. Hernández, J. M. Cañedo, J. C. Olivares-Galván, and P. S. Georgilakis: Journal of Materials Science Forum, Vol. 670, (2011), p.477.

Google Scholar

[7] G. Loizos, T. Kefalas, A. Kladas, T. Souflaris, and D. Paparigas: Journal of Magnetism and Magnetic Materials, Vol. 320, (2008), p.874.

DOI: 10.1016/j.jmmm.2008.04.068

Google Scholar

[8] G. Loizos, T. D. Kefalas, A. G. Kladas, and A. T. Souflaris: IEEE Trans. Magn., Vol. 46, No. 2, (2010), p.594.

DOI: 10.1109/tmag.2009.2033022

Google Scholar

[9] T. D. Kefalas, G. Loizos, and A. G. Kladas: IEEE Trans. Magn., Vol. 47, No. 5, (2011), p.1058.

Google Scholar

[10] T. D. Kefalas, G. Loizos, and A. G. Kladas: Journal of Materials Science Forum, Vol. 670, (2011), p.284.

Google Scholar

[11] L. A. Righi, P. I. Koltermann, N. Sadowski, J. P. A. Bastos, R. Carlson, A. Kost, L. Jänicke, and D. Lederer: IEEE Trans. Magn., Vol. 36, No. 4, (2000), p.1263.

DOI: 10.1109/20.877670

Google Scholar

[12] P. I. Koltermann, J. P. A. Bastos, N. Sadowski, N. J. Batistela, A. Kost, L. Jänicke, and K. Miethner: IEEE Trans. Magn., Vol. 38, No. 2, (2002), p.897.

DOI: 10.1109/20.996231

Google Scholar

[13] P. Rovolis, A. Kladas, and J. Tegopoulos: Journal of Materials Science Forum, Vol. 670, (2011), p.74.

Google Scholar