A Simple Algorithm for the Calculation of Hysteresis for Isotropic NdFeB Magnets

Article Preview

Abstract:

The calculation of hysteresis curves with the Stoner-Wohlfarth model is somewhat laborious. For the Nd2Fe14B phase, the second order magnetocrystalline anisotropy (K2) constant is relevant, and this case only has been discussed in some studies. In this article, a simple algorithm for the calculation of the Stoner-Wohlfarth model for isotropic NdFeB magnets is described. This algorithm makes easier the modeling of the hysteresis curves of bonded melt-spun NdFeB magnets.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

119-123

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.C. Stoner and E. P. Wohlfarth: Nature. Vol. 160 (1947), p.650.

Google Scholar

[2] E.C. Stoner and E. P. Wohlfarth: Phil. Trans. Royal Soc. London Vol. A240 (1948), p.599.

Google Scholar

[3] M.F. de Campos and J.A. de Castro: Materials Science Forum Vols. 660-661 (2010), p.279.

Google Scholar

[4] M.F. de Campos and J.A. de Castro: in 21th Int. Workshop on Rare-Earth Permanent Magnets. Bled, Slovenia 2010. Procceding.. 2010 Slovenia. pp.61-63.

Google Scholar

[5] B.M. Ma, J.W. Herchenroeder, B. Smith, M. Suda, D.N. Brown and Z. Chen: Journal of Magnetism and Magnetic Materials Vol. 239 (2002), p.418.

Google Scholar

[6] Zhongmin Chen, David Miller and Jim Herchenroeder: J. Appl. Phys. Vol. 107 (2010) p. 09A730.

Google Scholar

[7] Er Girt, K. M Krishnan, G Thomas, E. Girt and Z Altounian: J. Magn. Magn. Mater. Vol. 231 (2001), p.219.

Google Scholar

[8] C.R. Chang: J. Appl. Phys. Vol. 69 (1991), p.2431.

Google Scholar

[9] F.E. Pinkerton: J. Appl. Phys. Vol. 63 (1988), p.5427.

Google Scholar

[10] B.D. Cullity and C.D. Graham Jr: Introduction to Magnetic Materials. Second Edition. IEEE Press by John Willey. New Jersey, (2009).

Google Scholar

[11] M.F. de Campos, F.J.G. Landgraf, N.H. Saito, S.A. Romero, A.C. Neiva, F.P. Missell, E. de Morais, S. Gama, E.V. Obrucheva and B.V. Jalnin: J. Appl. Phys. Vol. 84, (1998), p.368.

DOI: 10.1063/1.368075

Google Scholar

[12] M.F. de Campos, S.A. Romero, F.J.G. Landgraf and F.P. Missell: Journal of Physics, Conference Series Vol. 303 (2011), p.012049.

Google Scholar

[13] M.F. de Campos: Materials Science Forum. Vols. 498-499 (2005), p.134.

Google Scholar

[14] E. Callen, Y.J. Liu, J.R. Cullen: Physical Review B Vol. 16 (1977), p.263.

Google Scholar

[15] S. Chikazumi: Physics of Magnetism. (Robert E. Krieger Pub. Company. Malabar, Florida. Reprint (1984).

Google Scholar