Ferrite Ni0,5Zn0,5Fe2O4 Synthesized by Combustion Reaction in a Microwave Oven Using Urea and Glycine as Fuel: Influence of Power

Article Preview

Abstract:

This paper reports the preparation of ferrite Ni0,5Zn0,5Fe2O4 by combustion reaction in a microwave oven, and its structural, morphological and magnetic characterization. The influence of microwave power and the fuel type was investigated. The samples were characterized by: XRD, BET, SEM and AGM. The results showed the formation of phase ferrite Ni0, 5Zn0,5Fe2O4 in all conditions evaluated. The presence of secondary phase hematite and nickel were observed only in samples with glycine. The microwave oven power and the fuel type altered the structure, morphology and magnetic behavior of the samples. In general, the samples synthesized with urea are promising for applications in catalysis, ferrofluids, magnetic sensors and the samples synthesized with glycine are promising for use as absorber electromagnetic radiation, due to the large particle size and good magnetic characteristics observed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1217-1221

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. P. Reddy, G. Balakrishnaiah, W. Madhuri, M. V. Ramana, N. R. Reddy, K. V. S. Kumar, V. R. K. Murthy, R. R. Reddy. J. Phys. Chem. Solids 71 (2010) p.1373–1380.

DOI: 10.1016/j.jpcs.2010.06.007

Google Scholar

[2] T. Y. Liu, S. H. Hu, K. H. Liu, R. S. Shaiu, D. M. Liu and S. Y. Chen. Langmuir 24 (2008), p.13306–13311.

Google Scholar

[3] C. L. Dennis, A. J. Jackson, J. A. Borchers, P. J. Hoopes, R. Strawbridge, A.R. Foreman. Nanotechnology 20 (2009), pp.395103-1–395103-7.

DOI: 10.1088/0957-4484/20/39/395103

Google Scholar

[4] H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, H. Yang, He Hu, Shiping Yang: Acta Biomaterialia 7 (2011) p.3496–3504.

Google Scholar

[5] J. -H. Nam, Y. -H. Joo, J. -H. Lee, J. H. Chang, J. H. Cho, M. P. Chun, B. I. Kim. J. Magn. Magn. Mater. 321, (2009) p.1389–1392.

Google Scholar

[6] J. -H. Kim, S. -S. Kim. J. Alloys. Compd. 509 (2011) p.4399–4403.

Google Scholar

[7] K. -S. Lin, A. K. Adhikari, Z. -Y. Tsai, Y. -P. Chen, T. -T. Chien, H. -B. Tsai. Catal. Tod. 174, (2011), pp.88-96.

Google Scholar

[8] G. S. Shahane, A. Kumar, M. Arora, R. P. Pant, K. Lal. J. Magn. Magn. Mater. 322 (2010) p.1015–1019.

Google Scholar

[9] O. Mirzaee, M.A. Golozar, A. Shafyei. Mater. Charact. 59 (2008) p.638 – 641.

Google Scholar

[10] W. Yan, W. Jiang, Q. Zhang, Y. Li, H. Wang, Mater. Sci. Eng. B 171 (2010) p.144–148.

Google Scholar

[11] X. Lu, G. Liang, Q. Sun, C. Yang. Mater. Lett. 65 (2011) p.674–676.

Google Scholar

[12] C. Jiang, R. Liu, X. Shen, L. Zhu, F. Song. Powder Technology 211 (2011) p.90–94.

Google Scholar

[13] S. Thakur, S. C. Katyal, M. Singh. J. Magn. Magn. Mater. 321 (2009) p.1–7.

Google Scholar

[14] A. C. F. M. Costa, M. R. Morelli, R. H. G. A. Kiminami, in: Combustion Synthesis Processing of Nanoceramics. ASP–Handbook of Nanoceramics and Their Based Nanodevices. Chapter 80, (2008).

Google Scholar

[15] S. R. Shannigrahi, K. P. Pramodaand, F. A. A. Nugroho: submitted to Journal of Magnetism and Magnetic Materials (doi: 10. 1016/j. jmmm. 2011. 07. 050).

Google Scholar

[16] A. C. F. M. Costa, Synthesis for combustion reaction, sintering and ferrites characterization Ni–Zn, Doctorate Thesis in Materials Science and Engineering, UFSCar, Brazil, (2002).

Google Scholar

[17] A. C. F. M. Costa, D. A. Vieira V. J. Silva, V. C. S. Diniz, R. H. G. A. Kiminami, L. Gama. J. Alloys. Compd. 483 (2009) 37–39.

Google Scholar

[18] Y-P Fu, C-H Lin. J. Magn. Magn. Mater. 251 (2002), p.74–79.

Google Scholar

[19] D. A. Vieira, V. C. S. Diniz, H. L. Lira, R. H. G. A. Kiminami, D. Cornejo, A. C. F. M. Costa, Mater. Sci. Forum. Vols. 660-661 (2010), pp.910-915.

DOI: 10.4028/www.scientific.net/msf.660-661.910

Google Scholar

[20] D. K. Agrawal, Current Opinion in Solid. State & Mater. Sci. 3 (1998) 480.

Google Scholar

[21] H. Klung and L. Alexander: X-ray diffraction procedures. New York: Wiley (1962).

Google Scholar

[22] D. Louer; T. Roisnel. DICVOL91 For Windows, Laboratoire de Cristallochimie, Universite de Rennes I, Campus de Beaulieu, France, (1993).

Google Scholar

[23] C. -H. Jung, S. Jalota, S. B. Bhaduri. Mater. Lett. 59, (2005) pp.2426-2432.

Google Scholar

[24] S. W. Lee, C. S. Kim. J. Magn. Magn. Mater. 304 (2006) p. e418–e420.

Google Scholar

[25] S. Thakur, S. C. Katyal, A. Gupta, V. R. Reddy, S. K. Sharma, M. Knobel and M. Singh. J. Phys. Chem. C 113, (2009), 20785–20794.

DOI: 10.1021/jp9050287

Google Scholar