Evaluation of the Apatite Coating on Silicon Nitride Based Ceramics Sintered with Re2O3 Additives (Re = Y, La, Yb)

Article Preview

Abstract:

As alternative for alumina and zirconia implants, silicon nitride based ceramics are considered promising candidate due to its biocompatibility and mechanical properties. However, this materials exhibit a bioinert character, leading to clinical failures. To overcome this problem, a biomimetic coating of hydroxyapatite is proposed in this paper, so that the surface can be bioactive and, consequently, the osteointegration process can be enhanced. Silicon nitride samples were sintered with different additives (Y, La and Yb) and the surfaces before and after coating were characterized by diffuse reflectance infrared Fourier transformed (DRIFT), X ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the surfaces of bioinert silicon nitride samples sintered with different additives could be transformed into bioactive by the formation of a hydroxyapatite layer through biomimetic process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1243-1248

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[2] G. Maccauro, C. Piconi, W. Burger, L. Pilloni, E. de Santis, F. Muratori and I.D. Learmonth: J. Bone Joint Surg. Vol. 86b (2004), p.1192.

DOI: 10.1302/0301-620x.86b8.15012

Google Scholar

[3] M.F. Zawrah and M. E. Gazery: Mat. Chem. and Phys. Vol. 106 (2007), p.330.

Google Scholar

[4] M.N. Rahaman, A. Yao, B.S. Bal, J.P. Garino and M. D. Ries: J. Am. Ceram. Soc. Vol. 90 (2007), p. (1965).

Google Scholar

[5] J. Chevalier and L. Gremillard: J. Euro. Ceram. Soc. Vol. 29 (2009), p.1245.

Google Scholar

[6] C.C. Guedes e Silva, B. König Jr., M.J. Carbonari and M. Yoshimoto: Mat. Charac. Vol. 59 (2008), p.1339.

Google Scholar

[7] L. Xikun, L. Jing, Q. Like, C. Tong , Q. Guanming and S. Yanbin: J. Rare Earths Vol. 25 (2007), p.287.

DOI: 10.1016/s1002-0721(07)60490-6

Google Scholar

[8] S.C. Danforth, W. Symons, K.J. Nilsen and R.E. Riman , in: Advanced Ceramic Processing and Technology. Edited by J.G.P. Binner , Willian Andrew Publishing, Noyes (1990).

Google Scholar

[9] K. Berroth and T. Prescher: Key Eng. Mater. Vol. 287 (2005), p.3.

Google Scholar

C.C. Guedes e Silva, O.Z. Higa and J.C. Bressiani: Mat. Sci. and Eng. C Vol. 24 (2004), p.643.

Google Scholar

[1] B.S. Bal, A. Khandkar, R. Lakshminarayanan and I. Clarke: J. Arthroplasty Vol. 24 (2009), p.110.

Google Scholar

[2] G. Ziegler, J. Heinrich and G. Wötting: J. Mater. Sci. Vol. 22 (1987), p.3041.

Google Scholar

[3] Q. Guanming, L. Xikun, Q. Tai, Z. Haitao, Y. Honghao and M. Ruiting: J. Rare Earths Vol. 25 (2007), p.281.

DOI: 10.1016/s1002-0721(07)60489-x

Google Scholar

[4] W.A. Sanders and D. M. Mieskowski: Am. Ceram. Soc. Bull. Vol. 64 (1985), p.304.

Google Scholar

[5] F.C. Peillon and F. Thevenot: J. Eur. Ceram. Soc. Vol. 22 (2002), p.271.

Google Scholar

[16] K. Chihara, D. Hiratsuka, Y. Shinoda and T. Akatsu: Mat. Sci. Eng. B. Vol. 148 (2008), p.203.

Google Scholar

[7] P. Habibovic, F. Barrère, C.A. van Blitterswijk, K. Groot and P. Layrolle: J. Am. Ceram. Soc. Vol. 85 (2002), p.517.

Google Scholar

[8] S.W. Ha, R. Reber, K.L. Ecjert, M. Petitmermet and J. Mayer: J. Am. Ceram. Soc. Vol. 81 (1998), p.81.

Google Scholar

[9] P. Ducheyne, W. van Raemdonck, J.C. Heughbaert and M. Heughbaert: Biomaterials Vol. 7 (1986), p.97.

Google Scholar

[20] J.H. Park, D.Y. Lee, K.T. Oh, Y.K. Lee, K.M. Kim and K.N. Kim: Mat. Letters Vol. 60 (2006), p.2573.

Google Scholar

[2] A.M. Ektessabi: Nucl. Inst. and Meth. In Phys. Res. B Vol. 127-128 (1997), p.1008.

Google Scholar

[22] L. Gan and R. Pilliar: Biomaterials Vol. 25 (2004), p.5303.

Google Scholar

[23] E.C.S. Rigo, A.O. Boschi, M. Yoshimoto and S. Allegrini Jr.: Mater. Sci. Eng. C Vol 24 (2004), p.647.

Google Scholar

[24] T. Kokubo: Acta Mater. Vol. 46 (1998), p.2519.

Google Scholar

[25] E.C.S. Rigo, L.A. Santos, R.G. Carrodeguas and A.O. Boschi: Mater. Sci. Forum. Vol. 416-418 (2003), p.658.

Google Scholar

[26] L. Jonasova, F.A. Muller, A. Helebrant, J. Strnad and P. Greil: Biomaterials Vol. 23(2002), p.3095.

Google Scholar

[27] C.C. Guedes e Silva, E.C.S. Rigo, J. Marchi, A.H.A. Bressiani and J. C. Bressiani: Mat. Res. Vol. 11 (2008) p.47.

Google Scholar

[28] J. Marchi, C C Guedes e Silva, B B Silva, J C Bressiani and A H A Bressiani: Mat. Res. Vol. 12 (2009), p.145.

DOI: 10.1590/s1516-14392009000200006

Google Scholar

[29] S. Yokoyama, H. Goto, T. Miyamoto, N. Ikeda and K. Shibahara: Appl. Surf. Sci. Vol 112 (1997), p.75.

Google Scholar

[30] M. Rudolphi, M. Bruns, H. Baumann and U. Geckle: Diam. and Rel. Mat. Vol. 16 (2007), p.1273.

Google Scholar

[31] F. Barrere, C. van Blitterswijk, K. de Groot and P. Layorolle: Biomaterials Vol. 23 (2001), p.2211.

Google Scholar