Structural Comparison of Amorphous, Nanocrystalline and Microcrystalline Al90Fe7Nb3 Alloys

Article Preview

Abstract:

This work presents the structural comparison of Al90Fe7Nb3 alloys obtained by different techniques: (i) partly amorphous powder alloy produced by mechanical milling and their consolidation by hot extrusion (cylindrical bar), (ii) from millimeter portion by casting centrifuged system (square shape), and (iii) from millimeter portion by melt-spinning (ribbon shape). The cylindrical consolidated alloy presented an Al matrix with Al3Nb and Al13Fe4 nanophases (intermetallic compounds), the square consolidated alloy resulted in the same structure composed of Al matrix with Al3Nb and Al13Fe4 in micro-phase scale. On the other hand, the ribbon alloy exhibits an amorphous matrix with primary Al nanocrystals (fcc-Al phase).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

3-8

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Greer: Mat. Sc. Eng. A Vol. 304 (2001), p.68.

Google Scholar

[2] Z.C. Zhong, X.Y. Jiang and A.L. Greer: Mater. Sci. Eng. A Vol. 226/228 (1997), p.531.

Google Scholar

[3] G.S. Choi, Y.H. Kim, H.K. Cho, A. Inoue and T. Masumoto: Scripta Metall. Mater. Vol. 33 (8) (1995), p.1301.

Google Scholar

[4] A. Inoue: Mater. Sci. Eng. A Vol. 179/180 (1994), p.57.

Google Scholar

[5] T. Masumoto: Mater. Sci. Eng. A Vol. 179/180 (1994), p.8.

Google Scholar

[6] A. Inoue, A. Takeuchi: Acta Mater. Vol. 59 (2011), p.2243.

Google Scholar

[7] K. Ohtera, K. Kita, H. Nagahama, A. Inoue and T. Masumoto: Mater. Sci. Eng. A Vol. 179/180 (1994), p.592.

Google Scholar

[8] K. Higashi, A. Uoya, T. Mukay, S. Tanimura, A. Inoue, T. Masumoto and T. Ohtera: Mater. Sci. Eng. A Vol. 181/182 (1994), p.1068.

Google Scholar

[9] M.L. Ashley and J.R. Scully: Corros. Sci. Vol. 29 (2007), p.2351.

Google Scholar

[10] A. Inoue, Y. Kawamura, H.M. Kimura and H. Mano: Mat. Sci. Forum Vol. 360-362 (2001), p.129.

Google Scholar

[11] A.V. Sameljuk, O.D. Neikov and A.V. Krajnikov: Corros. Sci. Vol. 49 (2007), p.276.

Google Scholar

[12] V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Metall. Mater. Trans. A (2001), p.2331.

Google Scholar

[13] K. Ohtera, A. Inoue, T. Terabayashi, H. Nagahama and T. Masumoto: Mater. T. JIM Vol. 33 (8) (1992), p.775.

Google Scholar

[14] A. Inoue: Prog. Mater. Sci. Vol. 43 (1998), p.365.

Google Scholar

[15] K. Higashi, A. Uoya, T. Mukai, S. Tanimura, A. Inoue, T. Masumoto and K. Ohtera: Mat. Sc. Eng. A Vol. 182 (1994), p.1068.

DOI: 10.1016/0921-5093(94)90803-6

Google Scholar

[16] Y. Kawamura, A. Inoue, K. Sasamori and T. Masumoto: Mat. Sc. Eng. A 182 (1994), p.1068.

Google Scholar

[17] K.R. Cardoso, A. García Escorial, M. Lieblich and W.J. Botta F°: Key Eng. Mat. Vol. 189-191 (2001), p.258.

Google Scholar

[18] C. Suryanarayana: Prog. Mat. Sci. Vol. 46 (2001), p.1.

Google Scholar

[19] J.H. Paik, W.J. Botta F°. and A.R. Yavari: Mat. Sci. Forum Vol. 226 (1996), p.305.

Google Scholar

[20] C.A. D Rodrigues, A.R. Yavari, C.S. Kiminami, W.J. Botta F°: Mat. Sci. Forum Vol. 416-418 (2003), p.287.

Google Scholar

[21] F. Audebert., H. Sirkin and A. Garcia Escorial: Scripta Mater. Vol. 36 (1997), p.405.

Google Scholar

[22] C.A.D. Rodrigues, C.S. Kiminami, W.J. Botta F° and G. Tremiliosi-Filho: Portugaliae Electrochimica Acta, Vol. 27(3) (2009), p.309.

DOI: 10.4152/pea.200903309

Google Scholar