Synthesis and Characterization of Strontium and Calcium Titanate Polycrystalline Powders by a Modified Polymeric Precursor Technique

Article Preview

Abstract:

SrTi0,65Fe0,35O3-δ, Ca0,5Sr0,5Ti0,65Fe0,35O3-δ, CaTi0,65Fe0,35O3-δ ceramic powders were synthesized by the polymeric precursor technique using CaCO3, SrCO3, C12H28O4Ti and Fe (NO3)3.9H2O. After calcination, each powder was heat treated at temperatures chosen according to data collected on thermogravimetric-differential thermal analysis experiments. The compositions were analyzed by X-ray diffraction for structural phase evaluation (either perovskite cubic or orthorhombic), laser scattering for determination of particle size distribution and average particle size, transmission electron microscopy (TEM) for observation of particle shape and average true size. Pressed powders sintered at 1250°C were analyzed by X-ray diffraction and X-ray fluorescence; their surfaces were observed by scanning probe microscopy (SPM) for topographical analysis of grains and grain boundaries. TEM results show that the powders consist of agglomerated nanoparticles. Sr-based compounds have cubic perovskite phases whereas Ca-based compounds are orthorhombic. SPM images show intergranular features which might be responsible for reported blocking of charge carriers observed in impedance spectroscopy diagrams.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

904-908

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Koumoto, Y. Wang, R. Zhang, A. Kosuga and R. Funahashi, Annu. Rev. Mater. Res. Vol. 40 (2010), p.363.

Google Scholar

[2] W. Menesklou, H.J. Schreiner, K.H. Hardtl and E. Ivers-Tiffée, Sens. Act. B Vol. 59 (1999), p.184.

Google Scholar

[3] E. Ivers-Tiffée, K.H. Hardtl, W. Menesklou and J. Riegel. Electrochim. Acta Vol. 47 (2001), p.807.

Google Scholar

[4] R. Moos, W. Menesklou, H. -J. Schreiner and K.H. Hardtl, Sens. Act. B Vol. 67 (2000), p.178.

Google Scholar

[5] A. Rothschild, W. Menesklou, H.L. Tuller and E. Ivers-Tiffée, Chem. Mater. Vol. 18 (2006), p.3651.

Google Scholar

[6] K. Sahner, J. Straub and R. Moos, J. Electroceram. Vol. 16 (2006), p.179.

Google Scholar

[7] R. Moos, F. Rettig, A. Huerland and C. Plog, Sensor Actuat. B-Chem Vol. 93 (2003), p.43.

Google Scholar

[8] A. Rothschild and H.L. Tuller, J. Electroceram. Vol. 17 (2006), p.1005.

Google Scholar

[9] A. Rothschild, S.J. Litzelman, H.L. Tuller, W. Menesklou, T. Schneider and E. Ivers-Tiffée, Sens. Act. B Vol. 108 (2005), p.223.

DOI: 10.1016/j.snb.2004.09.044

Google Scholar

[10] D. Neagu and J.T.S. Irvine, Chem. Mater. Vol. 22 (2010), p.5042.

Google Scholar

[11] P. Blennow, K.K. Hansen, L.R. Wallenberg and  M. Mogensen, Advances is Solid Oxide Fuel Cells III, Ceramic Engineering and Science Proc. 28 (2008), p.203.

DOI: 10.1002/9780470339534.ch20

Google Scholar

[12] Y. Hanajiri, H. Yokoi, T. Matsui, Y. Arita, T. Nagasaki and H. Shigematsu, J. Nucl. Mater. Vol. 247 (1997), p.285.

Google Scholar

[13] Y. Li, S. Qin and F. Seifert, J. Solid State Chem. Vol. 180 (2007), p.824.

Google Scholar

[14] A.G. Andersen, T. Hayakawa, T. Tsunoda, H. Orita, M. Shimizu and K. Takehira, Catal. Lett. Vol. 18 (1993), p.37.

Google Scholar

[15] V.M. Ferreira, F. Azough, J.L. Baptista and R. Freer, J. Mater. Res. Vol. 12 (1997), p.3293.

Google Scholar

[16] E.R. Kipkoech, F. Azough, R. Freer, C. Leach, S.P. Thompson and C.C. Tang, J. Eur. Ceram. Soc. Vol. 23 (2003), p.2677.

Google Scholar

[17] L. Zhou, P.M. Vilarinho and J.L. Baptista, J. Am. Ceram. Soc. Vol. 82 (1999), p.1064.

Google Scholar

[18] K.D. Madal, L. Behera and K. Ismail, J. Alloy Compd. Vol. 325 (2003), p.309.

Google Scholar

[19] A.C. Larson and R.B.V. Dreele, General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86-748, 2004).

Google Scholar