Mechanical Characterization of Zirconia Synthesized by the Sol-Gel Process

Article Preview

Abstract:

Zirconia ceramics (ZrO2) are bioinert materials with excellent biocompatibility, high resistance to corrosion and to wear, high toughness in comparison with other advanced ceramics, and suitable for various structural applications. These properties are related to their microstructure and effects caused by crystalline phases transformation, intrinsic of zirconia. In this work, stabilized zirconia ceramic (ZrO2 with 3 mol % yttria) was produced using the synthesized powder obtained by the sol-gel process, in which citric acid was chosen as complexing agent and maize starch as gelling. The zirconia ceramic was characterized with respect to relative density (99.75±0.10 %), crystalline phases (predominantly tetragonal), microstructure (homogeneous and small grains), flexural strength (510±60 MPa), Vickers hardness (11.6±0.3 GPa) and fracture toughness (Niihara = 11.8±2.9 MPa.m1/2 and Evans = 10.9±1.2 MPa.m1/2). It can be concluded that the sol-gel process is an attractive route to obtain zirconia ceramics with good mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

945-950

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Liang; S. P. Dutta, Technovations Vol. 21 (2001), p.61.

Google Scholar

[2] C. Santos, L. H. P. Teixeira, D. M. B. Sudo, K. Strecker, C. N. Elijah: 49 ° Congresso Brasileiro de Ceramica (CBC). São Pedro, 06-09 de Junho 2005. Proceeding.. São Pedro 2005. (SP).

Google Scholar

[3] T. Chraska, A.H. King and C.C. Berndt: Mat. Sci. Eng. A Vol. 286 (2000), p.169.

Google Scholar

[4] C. Huang, Z. Tang, Z. Zhang and J. Gong: Mat. Res. Bull. Vol. 35 (2000), p.1503.

Google Scholar

[5] C.C.T. Yang, H. J. Cho and W.J. Wei: J. Europ. Ceram. Soc. Vol. 22 (2002), p.199.

Google Scholar

[6] J. Kondoh, H. Shiota, K. Kawachi and T. Nakatani: J. Alloys and Comp. 365 (2004), p.253.

Google Scholar

[7] C. Piconi and G. Maccauro: Biomaterials Vol. 20 (1) (1999), pp.1-25.

Google Scholar

[8] J.K.M.F. Daguano, C. Santos, R.C. Souza, R.M. Balestra, K. Strecker and C.N. Elias: International Journal of Refractory Metals& Hard Materials Vol. 25 (2007), p.374.

DOI: 10.1016/j.ijrmhm.2006.12.005

Google Scholar

[9] T. Xu, J. Vleugels, O. Van Der Biest, Y. Kan and P. Wang: J. Europ. Ceram. Soc. (2005), in press.

Google Scholar

[10] S.P. Taguchi: A study of the interaction of systems and SiC + Al2O3 / Y2O3 and SiC + AlN / Y2O3 aimed at high temperatures better understanding of ceramics SiC. Doutoral (Thesis). Lorena, 2005. Escola de Engenharia de Lorena (EEL). (SP).

Google Scholar

[11] E.M.B. Santos: Development and characterization of the bio-based ceramics zirconia and yttria aimed at implementing prostheses. 2007 120 f.: il. Master (Dissertation). Lorena, 2007. Escola de Engenharia de Lorena (EEL). (SP).

Google Scholar

[12] C.F. Souza: Fracture Strength of fixed partial dentures (FPDs) Substructures for Posterior Dense Zirconia under Cyclic Fatigue Tests. Master (Dissertation). Rio de Janeiro, 2007. Post Graduate and Engineering Research. Metallurgy and Materials (COPPE/UFRJ). (RJ).

Google Scholar

[13] A.H. Fernandes, Development and characterization of ZrO2-based ceramics using a bioglass system 3CaO. P2O5-SiO2-MgO as sintering additive. Master (Dissertation). Lorena, 2006. Escola de Engenharia de Lorena (EEL). (SP).

Google Scholar

[14] R. Stevens: Trans Brit Ceram Soc Vol. 80 (1981), p.81.

Google Scholar

[15] J. Wang and R. Stevens: J. Mat. Science Vol. 24 (1989), p.3421.

Google Scholar

[16] A.P. Oliveira and M.L. Torem: Powder Technology vol. 119 (2001), p.181.

Google Scholar

[17] Powder Diffraction File Inorganics Phases: alphabetical index, inorganics phases, JCPDS/International centre for diffraction data, Swarthmore, Pennsylvania (1979).

Google Scholar

[18] A.H. Aza, J. Chevalier, G. Fantozzi, M. Schehl and R. Torrecilias: Biomaterials Vol. 23 (2002), p.937.

Google Scholar

[19] G. Roebben, B. Basu, J. Vleugels and O. Van Der Biest: J. Europ. Ceram. Soc. Vol. 23 (2003), p.481. 20] C. Suciu, A.C. Hoffmann and P. Kosinski: Powder Technology Vol. 119 (2001), p.181.

Google Scholar

[21] D.R.R. Lazar, V. Ussui, M.C. Bottino, O. Z. Higa, S.G. Lorenzetti, J.O.A. Paschoal, J.C. Bressiani and A.H.A. Bressiani: 49 ° Congresso Brasileiro de Cerâmica (CBC). São Pedro, 06-09 de Junho 2005. Proceeding.. São Pedro 2005. (SP).

Google Scholar

[22] M. Guazzato, M. Albakry, S.P. Ringer and M.V. Swain: Dental Materials (2004), p.449.

Google Scholar

[23] X. Liang, Y. Qiu, S. Zhou, X. Hu, G. Yu and X. Deng: Journal of University of Science and Technology Beijing Vol. 15(6) (2008), p.764.

Google Scholar

[24] M. Zhou-Berbon, O.T. Sorensen and T.G. Langdon: Materials Letters Vol. 27 (1996), p.211.

Google Scholar

[25] J. Li, Z. Tang, Z. Zhang and S. Luo: Materials Science and Engineering B99 (2003), p.321.

Google Scholar

[26] M. Trunec and Z. Chlup: Scripta Materialia Vol. 61 (2009), p.56.

Google Scholar

[27] S. Tekeli and M. Erdogan, Ceramics International Vol. 28 (2002), p.785.

Google Scholar

[28] A.M.B. da Silva, J.P.B. Machado and S.P. Taguchi: 52° Congresso Brasileiro de Cerâmica (CBC). Florianópolis, 08-11 de Junho 2008. Proceeding.. Florianópolis 2008. (SC).

Google Scholar

[29] Powder Diffraction File Inorganics Phases: alphabetical index, inorganics phases, JCPDS/International centre for diffraction data, Swarthmore, Pennsylvania (1979).

Google Scholar