Integrity Assessment of Power-Plant Structural Elements Using Fracture Mechanics

Article Preview

Abstract:

The research work aimed to present the usability of the cracked round bar (CRB) specimen type for the determination of the linear-elastic plain strain fracture toughness values (KIc or KQ) on steels; and to demonstrate the applicability of the testing results for the reliability assessment of structural elements having cracks or crack like defects. Micro-alloyed structural steel and heat resistant steel were tested at elevated temperatures, at 260 °C and 410 °C, respectively, using small-sized specimens with small diameters. Four different equations were used for the evaluation of the tests, and the determined fracture toughness values were compared with one another. Reliability assessment calculations were realised on two structural element models, critical crack sizes and safety factors were determined for all cases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

November 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ASTM E 399, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, (2006).

DOI: 10.1520/e0399-08

Google Scholar

[2] S. K. Nath, U. Kr. Das, Effect of microstructure and notches on the fracture toughness of medium carbon steel, Journal of Naval Architecture and Marine Engineering. 3 (2006) 15-22.

DOI: 10.3329/jname.v3i1.925

Google Scholar

[3] M. Haager, G. Pinter, R. W. Lang, Ranking of PE-HD pipe grades by fatigue crack growth performance, Plastics Pipes XIII, Washington, 2006. pp.1-11.

DOI: 10.1179/174328905x29758

Google Scholar

[4] Sz. E. Kovcsik, E. M. Morozov, Kharakterisztiki kratkovremennojj treshhinosztojjkoszti materialov i metodü ikh opredelenija, Kiev, Naukova Dumka, (1988).

Google Scholar

[5] O. N. Romaniv, G. N. Nikiforcsin, Mekhanika korrozionnovo razrushenija konsztrukcionnükh szplavov, Moszkva, Metallurgija, (1986).

Google Scholar

[6] F. Nilsson, Fracture Mechanics – from Theory to Applications, KTH Högskoletryckeriet, Stockholm, (1999).

Google Scholar

[7] P. Romvári, L. Tóth, J. Lukács, Rechnergestützte Lebensdauerabschätzung unter Anwendung der Bruchmechanik, Neue Hütte. 30 (1985) 103-105.

Google Scholar

[8] J. Lukács, Effect of Reliability of Crack Propagation Measurement on the Assessment of Life-Times for Structural Elements Having Flaws, The International Journal of Pressure Vessels and Piping. 55 (1993) 261-268.

DOI: 10.1016/0308-0161(93)90034-q

Google Scholar

[9] E. Y. Lim et al., Approximate influence functions for part-circumferential interior surface cracks in pipes, in: ASTM STP 791, American Society for Testing and Materials, 1983, pp. I281-I296.

Google Scholar

[10] J. C. Jr. Newman, I. S. Raju, Stress intensity factors for internal surface cracks in cylindrical pressure vessels, Journal of Pressure Vessel Technology, Transactions of the ASME. 102 (1980) 342-346.

DOI: 10.1115/1.3263343

Google Scholar

[11] H. P. Keller (Ed. ), Bruchmechanik druckbeanspruchter Bauteile, Carl Hanser Verlag/Verlag TÜV Rheinland, München-Wien-Hauser-Köln, (1990).

DOI: 10.1002/mawe.19920230309

Google Scholar

[12] J. C. Jr. Newman, I. S. Raju, Stress intensity factors for internal and external surface cracks in cylindrical vessels, Journal of Pressure Vessel Technology, Transactions of the ASME. 104 (1982) 293-298.

DOI: 10.1115/1.3264220

Google Scholar