Preparation and Characterization of Multilayer Graphene by Mechanical Milling and Related Applications for Ceramic Composites

Article Preview

Abstract:

As graphene nanomaterials present exceptional mechanical, thermal and electric properties therefore it can be an excellent reinforcement material for ceramic composites. The research of ceramic composites incorporated with carbon-based fillers has focused on carbon nanotubes until now. In this work silicon nitride-based nanocomposites have been prepared with different ammount (1 and 3 wt%) of multilayer graphene (MLG) made by mechanical milling-based method as well as exfoliated graphite nanoplatelets (xGnP) and nanographene platelets (Angstron) in comparison. The morphology and microstructure of the sintered samples were studied by scanning electron microscope and transmission electron microscope. Phase compositions were determined by X-ray diffractometer. The bending strength and elastic modulus of MLG-silicon nitride composites showed enhanced values compared to the other graphene reinforced silicon nitride ceramic composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

252-259

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Soldano, A. Mahmood, E. Dujardin: Production, properties and potential of graphene, Carbon 48 (2010) 2127-2150.

DOI: 10.1016/j.carbon.2010.01.058

Google Scholar

[2] M. Segal, Selling graphene by the ton, Nat. Nanotech. 4 (2009) 612-614.

Google Scholar

[3] C.C. Koch: Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostructured Materials Vol. 9(1-8) (1997) 13-22.

DOI: 10.1016/s0965-9773(97)00014-7

Google Scholar

[4] C. Knieke, A. Berger, M. Voigt, R.N. Klupp Taylor, J Röhrl, W Peukert: Scalable production of graphene sheets by mechanical delamination, Carbon 48 (2010) 3196-3204.

DOI: 10.1016/j.carbon.2010.05.003

Google Scholar

[5] P. Kun, F. Wéber, Cs. Balázsi: Preparation and examination of multilayer graphene nanosheets by exfoliation of graphite in high efficient attritor mill, Cent. Eur. J. Chem., Vol. 9(1) (2011) 47-51.

DOI: 10.2478/s11532-010-0137-5

Google Scholar

[6] C. Balázsi, B. Fényi, N. Hegman, Z. Kövér, F. Wéber, Z. Vértesy, Z. Kónya, I. Kiricsi, L.P. Biró, P. Arató: Development of CNT/Si3N4 composites with improved mechanical and electrical properties, Composites: Part B 37 (2006) 418-424.

DOI: 10.1016/j.compositesb.2006.02.006

Google Scholar

[7] J. Tatami, T. Katashima, K. Komeya, T. Meguro and T. Wakihara, J. Am. Ceram. Soc. 88 (2005) 2889-2893.

DOI: 10.1111/j.1551-2916.2005.00539.x

Google Scholar

[8] O. Malek, J. González-Julián, J. Vleugels, W. Vanderauwera, B. Lauwers, and M. Belmonte: Carbon nanofillers for machining insulating ceramics, Mat. Today, Vol. 14(10) (2011) 496-501.

DOI: 10.1016/s1369-7021(11)70214-0

Google Scholar

[9] E.L. Corral, H. Wang, J. Garay, Z. Munir, E.V. Barrera: Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering, J. Eur. Ceram. Soc. 31 (3) (2011) 391-400.

DOI: 10.1016/j.jeurceramsoc.2010.10.020

Google Scholar

[10] P. Hvizdoš, A. Duszová, V. Puchý, O. Tapasztó, P. Kun, Cs. Balázsi: Wear Behavior of ZrO2-CNF and Si3N4-CNT Nanocomposites, Key Engineering Materials, Vol. 465 (2011) 495-498.

DOI: 10.4028/www.scientific.net/kem.465.495

Google Scholar

[11] Y. Fan, L. Wang, J. Lib, J. Lia, S. Sun, F. Chen, L. Chen, W. Jiang, Preparation and electrical properties of graphene nanosheet/Al2O3 composites, Carbon 48 (2010) 1743-1749.

DOI: 10.1016/j.carbon.2010.01.017

Google Scholar

[12] C. Ramirez, L. Garzón, P. Miranzo, M.I. Osendi, C. Ocal: Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy, Carbon 49 (2011) 3873-3880.

DOI: 10.1016/j.carbon.2011.05.025

Google Scholar

[13] L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, and E.L. Corral: Toughening in Graphene Ceramic Composites, ACS Nano, Vol. 5 (4) (2011) 3182–3190.

DOI: 10.1021/nn200319d

Google Scholar

[14] P. Kun, O. Tapasztó, F. Wéber, C. Balázsi: Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites, Cer. Int. 38 (2012) 211-216.

DOI: 10.1016/j.ceramint.2011.06.051

Google Scholar

[15] http: /www. xgsciences. com.

Google Scholar

[16] J. Lu, I. Do, H. Fukushima, I. Lee, L.T. Drzal: Stable Aqueous Suspension and Self-Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes, J. Nanomat., Article ID 186486 (2010) 1-11.

DOI: 10.1155/2010/186486

Google Scholar

[17] http: /angstronmaterials. com.

Google Scholar

[18] Á. Barna, Mater. Res. Soc. Symp. Proc. 254, 3 (1992).

Google Scholar

[19] C. Balázsi, K. Sedláčková, Z. Czigány: Structural characterization of Si3N4-carbon nanotube interfaces by transmission electron microscopy, Comp. Sci. Tech., 68 (2008) 1596-1599.

DOI: 10.1016/j.compscitech.2007.11.009

Google Scholar