Effects of the Cooling Rate on the Acoustic Properties of Pb-10Sn Solder

Article Preview

Abstract:

Microhardness and sound velocity were measured in case of differently prepared solder samples. The used Pb-10Sn solder samples were melted then cooled down applying different cooling rates. These procedures caused variant microstructure thus different microhardness and sound velocity values. The sound velocity was measured by means of scanning acoustic microscopy. Characterization of solder materials by acoustic microscopy gives the possibility to non-destructively estimate mechanical and reliability parameters of the given material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

356-360

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Ma, S. Bao, D. Lv, Z. Du, S. Li, Application of C-mode Scanning Acoustic Microscopy in Packaging, Electronic Packaging Technology, ICEPT (2007) 1-6.

DOI: 10.1109/icept.2007.4441498

Google Scholar

[2] T. M. Moore, K. A. Frank, Experience with nondestructive acoustic inspection of power IC's, Electronic Components and Technology Conference (1995) 305-314.

DOI: 10.1109/ectc.1995.514400

Google Scholar

[3] S. Haque, G. Lu, J. Goings, J. Sigmund, Characterization of interfacial thermal resistance by acoustic micrography imaging, Microelectronics Reliability 40 (2000) 465-476.

DOI: 10.1016/s0026-2714(99)00239-5

Google Scholar

[4] U. Böyük, N. Maraşli, Dependency of eutectic spacings and microhardness on the temperature gradient for directionally solidified Sn-Ag-Cu lead-free solder, Materials Chemistry and Physics 119 (2010) 442-448.

DOI: 10.1016/j.matchemphys.2009.09.022

Google Scholar

[5] P.R. Goulard, J.E. Spinelli, N. Cheung, N. Mangelinck-Nöel, A. Garcia, Al-Fe hypoeutectic alloys directionally solidified under steady-state and unsteady-state conditions, Journal of Alloys and Compounds 504 (2010) 205-210.

DOI: 10.1016/j.jallcom.2010.05.089

Google Scholar

[6] S. Canumalla, M.G. Oravecz, Nondestructive elastic property characterization of IC encapsulants, Applications of Fracture Mechanics in Electronic Packaging, ASME IMECE (1997).

DOI: 10.1115/imece1997-0496

Google Scholar

[7] N. Gust, E. Kühnicke, D. Breuer, Material characterization with the ultrasonic microscope, 31st International Spring Seminar on Electronics Technology, ISSE (2008) 91-95.

DOI: 10.1109/isse.2008.5276445

Google Scholar

[8] Y. Lee, J.O. Kim, J.D. Achenbach, Acoustic microscopy measurement of elastic constants and mass density, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 42 (1995) 253-264.

DOI: 10.1109/58.365239

Google Scholar

[9] H.S. Cao, J.J. Hunsinger, O. Eldekim, Determination of elastic modulus of nanocrystalline iron and titanium by means of acoustic microscopy, Scripta Materialia 46 (2002) 55-60.

DOI: 10.1016/s1359-6462(01)01196-4

Google Scholar

[10] S. Parthasarathi, B.R. Tittman, M. Nishida, Characterization of film interface integrity through scanning acoustic microscopy, Surface and Coatings Technology 105 (1998) 1-7.

DOI: 10.1016/s0257-8972(98)00484-8

Google Scholar

[11] Conquest Industries Alloys Guide & Chart, information on http: /www. conquestind. com/alloys_guide. php.

Google Scholar

[12] R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan, W. Jillek, investigations on microhardness of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder, Journal of Alloys and Compounds 392 (2005) 149-158.

DOI: 10.1016/j.jallcom.2004.08.079

Google Scholar

[13] A.B. Bouda, S. Lebaili, A. Benchaala, Grain size influence on ultrasonic velocities and attenuation, NDT&E International (2003) 1-5.

DOI: 10.1016/s0963-8695(02)00043-9

Google Scholar

[14] A.I. Korobov, N.I. Odina, A.V. Abramova, Experimental research of non-uniformly quenched steel using surface acoustic waves, Physics Procedia 3 (2010) 827-832.

DOI: 10.1016/j.phpro.2010.01.106

Google Scholar