Recent Developments and Future Plans for the Accelerator Based Slow Positron Facilities at AIST

Article Preview

Abstract:

We describe the recent installation of a new slow positron beamline at AIST and our plans to develop a dedicated superconducting accelerator for positron production. The new positron beamline is already installed and should be operational by the end of this fiscal year (March 2012). Initially positrons will be generated using a 70 MeV electron beam from the existing accelerator directed onto a newly installed converter and moderator assembly. The beamline has two experimental ports both dedicated to positron lifetime spectroscopy, one port with a focused beam (diameter ~ 30 microm) and the other unfocussed (~ 10 mm). A superconducting accelerator for positron production is currently under development. When completed, it will deliver a high frequency (~ MHz), high current (~ mA), short pulse length (< 100 ps) beam to the positron production target. We investigate the possibility of transporting the positron pulses thus produced directly onto samples for lifetime measurement. Such a scheme would remove the necessity for pulse stretching and chopping which is required with the existing LINAC and should allow for greatly increased slow positron transport efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-290

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Akahane, T. Chiba, N. Shiotani, S. Tanigawa, T. Mikado, R. Suzuki, M. Chiwaki, T. Yamazaki, and T. Tomimasu: App. Phys. A Vol. 51 (1990), p.156

DOI: 10.1007/bf00324279

Google Scholar

[2] R. Suzuki, T. Ohdaira and T. Mikado: Rad. Phys and Chem. Vol. 58 (2000), p.603

Google Scholar

[3] R. Suzuki, T. Ohdaira, T. Mikado, H. Ohgaki, M. Chiwaki and T. Yamazaki: App. Surf. Sci. Vol. 100/101 (1996), p.297

DOI: 10.1016/0169-4332(96)00230-9

Google Scholar

[4] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono and M. Fujinami: App. Phys. Lett. Vol. 94 (2009), p.194104

Google Scholar

[5] R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki and T. Tomimasu: Jpn. J. Appl. Phys. Vol. 30 (1991), p. L532

DOI: 10.1143/jjap.30.l532

Google Scholar

[6] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono and M. Fujinami: J. App. Phys. Vol. 103 (2008), p.094916

DOI: 10.4028/www.scientific.net/msf.607.238

Google Scholar

[7] N. Oshima, B. E. O'Rourke, R. Kuroda, R. Suzuki, H. Watanabe, S. Kubota, K. Tenjinbayashi, A. Uedono and N. Hayashizaki: App. Phys. Exp. Vol. 4 (2011), p.066701

DOI: 10.1143/apex.4.066701

Google Scholar

[8] B. E. O'Rourke, N. Oshima, R. Kuroda, R. Suzuki, T. Ohdaira, A. Kinomura, N. Hayashizaki, E. Minehara, H. Yamauchi, Y. Fukamizu, M. Shikibu, T. Kawamoto and Y. Minehara: J. Phys. Conf. Sers. Vol. 262 (2011), p.012043

DOI: 10.1088/1742-6596/262/1/012043

Google Scholar

[9] N. Kikuzawa, E. Minehara, M. Sawamura, N. Nagai, M. Takao, M. Sugimoto, M. Ohkubo, J. Sasabe, Y. Suzuki and Y. Kawarasaki: Nucl. Instrum. Meth. A Vol. 331 (1993), p.276

DOI: 10.1016/0168-9002(93)90058-p

Google Scholar

[10] B.E. O'Rourke, N. Hayashizaki, A. Kinomura, R. Kuroda, E.J. Minehara, T. Ohdaira, N. Oshima and R. Suzuki: Rev. Sci. Instrum. Vol. 82 (2011), p.063302

Google Scholar

[11] R. Krause-Rehberg, M. Jungmann, A. Krille, B. Werlich, A. Pohl, W. Anwand, G. Brauer, M. Butterling, H. Büttig, K.M. Kosev, J. Teichert, A. Wagner and T.E. Cowan: J. Phys. Conf. Sers. Vol. 262 (2011), p.012003

DOI: 10.1088/1742-6596/262/1/012003

Google Scholar

[12] http://www.pulsar.nl/gpt

Google Scholar

[13] M. Matsuya, S. Jinno, T. Ootsuka, M. Inoue, T. Kurihara, M. Doyama, M. Inoue and M. Fujinami: Nucl. Instrum. Meth. A. Vol. 645 (2011), p.102

DOI: 10.1016/j.nima.2010.12.228

Google Scholar