Ps Bubble in Liquids

Article Preview

Abstract:

Ortho-positronium lifetime in alkanes and alcohols was measured in a broad range of temperatures. The results were compared with predictions of the bubble model. The bubble radius can be determined from the Tao-Eldrup equation as well as calculated using the model. The depth of potential well and surface tension are the main factors ruling the Ps bubble size. The best fit of the bubble model to the experimental data is obtained assuming the rectangular potential well to be 1 eV deep (equivalent to an infinite one broadened by 0.166 nm) and the microscopic surface tension increased about 3 times comparing to the macroscopic one.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-32

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. Ferrel, Phys. Rev. 108 (1957), 167-168.

Google Scholar

[2] A.P. Buchikhin, V.I. Goldanskii, V.P. Shantarovich, Pisma v ZETF 13 (1971), 624-627.

Google Scholar

[3] L.O. Roellig, in: Positron annihilation, edited by A.T. Steward, L.O. Roellig Positron Annihilation, Academic Press, New York (1967), p.127.

DOI: 10.1016/b978-0-12-395497-8.50012-6

Google Scholar

[4] S.J. Tao, J. Chem. Phys. 56 (1972), 5499-5510.

Google Scholar

[5] M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63 (1981), 51-58.

Google Scholar

[6] Y. Ujihira, T. Ryuo, Y. Kobayashi, T. Nomizu, Appl. Phys. 16 (1978), 71-74.

Google Scholar

[7] G. Duplâtre, A. Haessler, J.Ch. Abbé, J. Phys. Chem. 89 (1985), 1756-1760.

Google Scholar

[8] Zs. Kajcsos, I. Dézsi, D. Horváth, Appl. Phys. 5 (1974), 53-56.

Google Scholar

[9] F.M. Jacobsen, M. Eldrup, O.E. Mogensen, Chem. Phys. 50 (1980) 393.

Google Scholar

[10] F.M. Jacobsen, O.E. Mogensen, G. Trumpy, Chem. Phys. 69 (1982) 71.

Google Scholar

[11] V.M. Byakov, S.V. Stepanov, Rad. Phys. Chem. 58 (2000), 687-692.

Google Scholar

[12] J. Kansy, Nucl. Instrum. Methods Phys. Res. A 373 (1996), 235-244.

Google Scholar

[13] J.J. Jasper, J. Phys. Chem. Ref. Data 1(4) (1972), 841-1009.

Google Scholar

[14] R.C. Tolman, J. Chem. Phys. 17 (1949), 333-337.

Google Scholar

[15] L.I. Shiff, Quantum Mechanics, McGraw Hill, NY (1968).

Google Scholar

[16] Y. Morinaka, Y. Nagashima, Y. Nagai, T. Hyodo, T. Kurihara, T. Shidara, K. Nakahara, Mater. Sci. Forum 255-257 (1997), 689-691.

DOI: 10.4028/www.scientific.net/msf.255-257.689

Google Scholar

[17] O.E. Mogensen, F.M. Jacobsen, Chem. Phys. 73 (1982), 223-234.

Google Scholar

[18] W.S. Ahn, M.S. Jhon, H. Pak, S. Chang, J. Colloid Interf. Sci. 38 (1972), 605-608.

Google Scholar