Low Temperature Superplasticity of Hydrostatically Extruded Mg-Al-Zn Alloys

Article Preview

Abstract:

In this work, the superplastic behavior of AZ31, AZ61 and AZ80 magnesium alloys was investigated. The alloys were hydrostatically extruded at only 150 °C to get fine grained microstructures (−2, 10−3 and 10−4 s−1. It was found that all alloys exhibited superplasticity at 200 °C, 175 °C and 225 °C for AZ31, AZ61 and AZ80 alloys, respectively. Low temperature dynamic recrystallisation played an important role for generating a finer and homogeneous microstructure during testing which enhances the deformation behavior of the alloys at these temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-315

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Y. Zheng, K. Wu, M. Liang, S. Kamados, Y. Kojima, Mater. Sci. Eng. A 327 (2004) 66

Google Scholar

[2] P. Panicker, A.H. Chokshi, R. K. Mishra, R. Verma and P.E. Krajewski, Acta Mater. 57(2009) 3683-3693

DOI: 10.1016/j.actamat.2009.04.011

Google Scholar

[3] W.J. Kim, J.D. Park, U.S. Yoon, J. Alloys and Compounds, 464 (2008) 197-204

Google Scholar

[4] H. Watanabe, M. Fukusumi, Mater. Sci. Eng. A 477 (2008) 153-161

Google Scholar

[5] W.J. Kim, M.J. Kim and J.Y. Wang, Mater. Sci. Eng. A 527 (2009) 322-327

Google Scholar

[6] M. Mabuchi, K. Ameyama, H. Iwasaky and K. Higashi, Acta Mater. 47 (1999) 2047-2057

Google Scholar

[7] H. Watanabe, T Mukai, K. Ishikawa, M. Mabuchi and K. Higashi, Mater. Sci. Eng. A 307(2001) 119-128

Google Scholar

[8] J. Swiosteck, J. Goken, D. Letzig and K.U. Kainer, Mater. Sci. Eng. A 424 (2006) 223-229

Google Scholar

[9] J. Goken, J. Swiosteck, D. Letzig and K.U. Kainer, Mater. Sci. Forum. 482 (2005) 387-390

Google Scholar

[10] E. Meza Garcia, Extrusion of Magnesium-Zn based alloys, Edit. Suedwestdeutscher Verlag fuer Hochschulschriften (2011)

Google Scholar

[11] J. Victoria-Hernandez, D. Hernandez-Silva, S.B. Yi, D. Letzig and J. Bohlen, Mater. Sci. Eng. A 530 (2011) 411-417

Google Scholar

[12] J. Swiostek, J. Bohlen, D. Letzig and K.U. Kainer, Mater. Sci. Forum, vol. 488-489 (2005) 491-494]

DOI: 10.4028/www.scientific.net/msf.488-489.491

Google Scholar

[13] J. Liu, Z. Cui and C. Li, Comput. Mater. Sci. (2007)

DOI: 10.1016/j.commatsci.2007.04.024

Google Scholar

[14] A. Galiyev, R. Kaibyshev and G. Gottstein, Acta mater. 49 (2001) 1199–1207

Google Scholar

[15] J.C. Tan, M.J. Tan, Mater. Sci. Eng. A339 (2003) 81-89

Google Scholar

[16] C.J. Lee, J.C. Huang, Acta Mater. 52 (2004) 3111–3122

Google Scholar

[17] W. J. Kim, S. W. Chung, C. S. Chung and D. Kum, Acta Mater. 49 (2001) 3337–3345

Google Scholar

[18] T.G. Langdon, Met. Sci. 16 (1982) 175–183

Google Scholar

[19] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, second edition, Elsevier, 2004, p.48, 49

DOI: 10.1016/b978-008044164-1/50003-7

Google Scholar

[20] T.G. Nieh, J. Wadsworth and O.D. Sherby, Superplasticity in metals and ceramics, Cambridge University Press, 1997, p.23

Google Scholar

[21] J. Victoria-Hernandez, D. Hernandez-Silva, S.B. Yi, D. Letzig and J. Bohlen, to be submitted

Google Scholar

[22] J. Bohlen, M. R. Nürnberg, J. W. Senn, D. Letzig, S. R. Agnew, Acta Mater. 55 (2007) 2101-2112

DOI: 10.1016/j.actamat.2006.11.013

Google Scholar