[1]
M. Koo, W.K. Lee, C.H. Lee, New reactor system for supecritical water oxidation and its application on phenol destruction, J. Chem. Eng. Sci. 52 (1997) 1201-1214.
DOI: 10.1016/s0009-2509(96)00477-0
Google Scholar
[2]
C. Pétrier, A. Francony, Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation, J. Ultrason. Sonochem. 4 (1997) 295-300.
DOI: 10.1016/s1350-4177(97)00036-9
Google Scholar
[3]
A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon-a critical review, J. Chemosphere 58 (2005) 1049-1070.
DOI: 10.1016/j.chemosphere.2004.09.067
Google Scholar
[4]
C. Scully, G. Collins, V. O'Flaherty, Anaerobic biological treatment of phenol at 9. 5-15°C in an expanded granular sludge bed (EGSB)-based bioreactor, J. Water Res. 40 (2006) 3737-3744.
DOI: 10.1016/j.watres.2006.08.023
Google Scholar
[5]
X.Y. Li, Y.H. Cui, Y.J. Feng, Z.M. Xie, J.D. Gu, Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, J. Water Res. 39 (2005) 1972-(1981).
DOI: 10.1016/j.watres.2005.02.021
Google Scholar
[6]
A.M. Polcaro, S. Palmas, F. Renoldi, M. Mascia, On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment, J. J. Appl. Electrochem. 29 (1999) 147-151.
DOI: 10.1023/a:1003411906212
Google Scholar
[7]
M. Li, C.P. Feng, W.W. Hu, Z.Y. Zhang, N. Sugiura, Electrochemical degradation of phenol using electrodes of Ti/RuO(2)-Pt and Ti/IrO(2)-Pt, J. J. Hazard. Mater. 162 (2009) 455-462.
DOI: 10.1016/j.jhazmat.2008.05.063
Google Scholar
[8]
Y.H. Cui, Y.J. Feng, Z.Q. Liu, Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes, J. Electrochim. Acta 54 (2009) 4903-4909.
DOI: 10.1016/j.electacta.2009.04.041
Google Scholar
[9]
X.M. Chen, G.H. Chen, Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution, J. Electrochim. Acta 50 (2005) 4155–4159.
DOI: 10.1016/j.electacta.2005.01.032
Google Scholar
[10]
X.M. Chen, G.H. Chen, P.L. Yue, Stable Ti/IrOx-Sb2O5-SnO2 Anode for O2 Evolution with Low Ir Content, J. J. Phys. Chem. B 105 (2001) 4623-4628.
Google Scholar
[11]
B. Adams, M. Tian, A.C. Chen, Design and electrochemical study of SnO(2)-based mixed oxide electrodes, J. Electrochim. Acta 54 (2009) 1491-1498.
DOI: 10.1016/j.electacta.2008.09.034
Google Scholar
[12]
H. An, Q. Li, D.J. Tao, H. Cui, X.T. Xu, L. Ding, et al., The synthesis and characterization of Ti/SnO2-Sb2O3/PbO2 electrodes: The influence of morphology caused by different electrochemical deposition time, J. Appl. Surf. Sci. 258 (2011).
DOI: 10.1016/j.apsusc.2011.08.034
Google Scholar
[13]
Y.Q. Wang, B. Gu, W.L. Xu, Electro-catalytic degradation of phenol on several metal-oxide anodes, J. J. Hazard. Mater. 162 (2009) 1159-1164.
DOI: 10.1016/j.jhazmat.2008.05.164
Google Scholar
[14]
B. Correa-Lozano, C. Comninellis, A.D. Battisti, Service life of Ti/SnO2-Sb2O5 anodes, J. J. Appl. Electrochem. 27 (1997) 970-974.
Google Scholar
[15]
J.F. Liu, Y.J. Feng, J.W. Lv, H.Y. Ding, Enhancing service life of SnO2 electrode by introducing an interlayer containing Mn element, J. Chinese J. Mater. Res. 22 (2008) 593-598.
Google Scholar
[16]
H. You, Y.H. Cui, Y.J. Feng, J.F. Liu, W.M. Cai, Preparation and investigation of Ti-based SnO2 electrode with an inter layer containing Co element, J. Mater. Sci. Tech. 12 (2004) 230-233.
Google Scholar
[17]
X.M. Chen, F.R. Gao, G.H. Chen, Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation, J. J. Appl. Electrochem. 35 (2005) 185-191.
DOI: 10.1007/s10800-004-6068-0
Google Scholar
[18]
R. Hutchings, K. Müller, R. Kötz, S. Stucki S, A structural investigation of stabilized oxygen evolution catalysts, J. J. Mater. Sci. 19 (1984) 3987-3994.
DOI: 10.1007/bf00980762
Google Scholar
[19]
S.P. Li, J. Fu, Z. Hu, Preparation and characterization of Y doped Ti/Sb2O5-SnO2 electro-catalytic electrodes, J. Journal of Shandong University (Natural Science) 43 (2008) 1-5.
Google Scholar