Energy-Storage Study in Lead-Free Anti-Ferroelectric Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 Ceramics

Article Preview

Abstract:

Lead-free (1-x-y)Bi0.5Na0.5TiO3-xBaTiO3-yK0.5Na0.5NbO3 (BNT-BT-KNN) ceramics were fabricated by traditional sintering method. The X-ray diffraction patterns showed that the ceramics are all crystallized into a perovskite structure phase. Measurements of temperature-dependent dielectric constants showed the two typical shoulders observed in the BNT-BT binary system, indicating that the ceramics are also of relaxor anti-ferroelectric nature. Moreover, it was observed that the dielectric constants decreased sharply with the increase of KNN addition, while maintained the same level when the BNT/BT ratio changed. The P-E hysteresis loops showed that the saturated polarization and the remnant polarization both decreased with the increasing addition of KNN, while the reduction of the BNT/BT ratio enhancesd the saturated polarization. The energy-storage density calculated from the P-E loops also increased with the decrease of KNN addition and BNT/BT ratio, which further demonstrated that the key for improving the energy density of BNT-BT-KNN ceramics is relatively low addition of KNN and low BNT/BT ratio.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

679-684

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer and Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed, Science. 313 (2006) 334-336.

DOI: 10.1126/science.1127798

Google Scholar

[2] X.F. Chen, H.L. Zhang, F. Cao, G.S. Wang, X.L. Dong, Y. Gu, H.L. He and Y.S. Liu, Charge–discharge properties of lead zirconate stannate titanate ceramics, J. Appl. Phys. 106 (2009) 034105.

DOI: 10.1063/1.3187778

Google Scholar

[3] G.R. Love, Energy-storage in ceramic dielectrics, J. Am. Ceram. Soc. 73 (1990) 323-328.

Google Scholar

[4] H. Ogihara, C.A. Randall and S. Trolier-Mckinstry, High-energy density capacitors utilizing 0. 7BaTiO3-0. 3BiScO3 ceramics, J. Am. Ceram. Soc. 92 (2009) 1719-1724.

DOI: 10.1111/j.1551-2916.2009.03104.x

Google Scholar

[5] Q.M. Zhang, L. Wang, J. Luo, Q. Tang and J. Du, Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass, J. Am. Ceram. Soc. 92 (2009) 1871-1873.

DOI: 10.1111/j.1551-2916.2009.03109.x

Google Scholar

[6] X.F. Chen, X.L. Dong, G.S. Wang, F. Cao and Y.L. Wang, Doped Pb(Zr, Sn, Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application, Ferroelectrics . 363 (2008) 56-63.

DOI: 10.1080/00150190802017449

Google Scholar

[7] Y.J. Feng, Z. Xu, H.G. Li and X. Yao, Effect of la modifier on the electric hysteresis of lead zirconate stannate titanate compounds, Ceramics International. 30 (2004) 1393-1396.

DOI: 10.1016/j.ceramint.2003.12.089

Google Scholar

[8] J.P. Dougherty, U.S. Patent 5, 545, 184. (1996).

Google Scholar

[9] J. Parui and S.B. Krupanidhia, Enhancement of charge and energy storage in sol-gel derived pure and La-modified PbZrO3 thin films, Appl. Phys. Lett. 92 (2008) 192901.

DOI: 10.1063/1.2928230

Google Scholar

[10] T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2) TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. Pt. 1 . 30 (1991) 2236-2239.

DOI: 10.1002/eej.4391120709

Google Scholar

[11] Y. Hiruma, K. Yoshi, H. Nagata, T. Takenaka, Investigation of phase transition temperatures on (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 and (Bi1/2Na1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics by electrical measurements, Ferroelectrics. 346 (2007).

DOI: 10.1016/j.ceramint.2007.10.023

Google Scholar

[12] J.E. Daniels, W. Jo, J. Rödel, J.L. Jones, Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93% Bi0. 5Na0. 5TiO3-7% BaTiO3 piezoelectric ceramic, Appl. Phys. Lett. 95 (2009) 032904.

DOI: 10.1063/1.3182679

Google Scholar

[13] S.T. Zhang, A.B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.J. Kleebe and J. Rödel, Lead-free piezoceramics with giant strain in the system Bi0. 5Na0. 5TiO3-BaTiO3-K0. 5Na0. 5NbO3. I. structure and room temperature properties, J. Appl. Phys. 103 (2008).

DOI: 10.1063/1.2838472

Google Scholar

[14] S.T. Zhang, A.B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg and J. Rödel, Lead‐free piezoceramics with giant strain in the system Bi0. 5Na0. 5TiO3-BaTiO3-K0. 5Na0. 5NbO3. II. temperature dependent properties, J. Appl. Phys. 103 (2008).

DOI: 10.1063/1.2838476

Google Scholar

[15] S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel and D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors, Adv. Mat. 21 (2009) 4716-4720.

DOI: 10.1002/adma.200901516

Google Scholar

[16] E. Dul'kin, E. Mojaev, M. Roth, W. Jo and T. Granzowb, Acoustic emission study of domain wall motion and phase transition in (1-x-y)Bi0. 5Na0. 5TiO3-xBaTiO3-yK0. 5Na0. 5NbO3 lead-free piezoceramics, Scripta Materialia. 60 (2009) 251-253.

DOI: 10.1016/j.scriptamat.2008.10.014

Google Scholar

[17] W. Jo, T. Granzow, E. Aulbach, J. Rödel and D. Damjanovic, Origin of the large strain response in (K0. 5Na0. 5)NbO3-modified (Bi0. 5Na0. 5)TiO3-BaTiO3 lead-free piezoceramics, J. Appl. Phys. 105 (2009) 094102.

DOI: 10.1063/1.3121203

Google Scholar

[18] J.E. Daniels, W. Jo, J. Rödel, V. Honkimäki and J. L. Jones, Electric-field-induced phase-change behavior in (Bi0. 5Na0. 5)TiO3-BaTiO3-(K0. 5Na0. 5)NbO3: a combinatorial investigation, Acta Materialia. 58 (2009) 2103-2111.

DOI: 10.1016/j.actamat.2009.11.052

Google Scholar

[19] B. Xu, N.G. Pai and L.E. Cross, Lanthanum doped lead zirconate titanate stannate antiferroelectric thin films from acetic acid-based sol-gel method, Mater. Lett. 34 (1998) 157-160.

DOI: 10.1016/s0167-577x(97)00165-1

Google Scholar

[20] C. Ma and X. Tan, Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. Solid State Commun. 150 (2010) 1497-1500.

DOI: 10.1016/j.ssc.2010.06.006

Google Scholar

[21] C. Ma, X. Tan, E. Dul'kin and M. Roth, Domain structure-dielectric relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics, J. Appl. Phys. 108 (2010) 104105.

DOI: 10.1063/1.3514093

Google Scholar

[22] C. Ma and X. Tan, In situ transmission electron microscopy study on the phase transition in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics, J. Am. Ceram. Soc. 94 (2011) 4040-4044.

DOI: 10.1111/j.1551-2916.2011.04670.x

Google Scholar

[23] J. Kling, X. Tan, W. Jo, H. J. Kleebe, H. Fuess and J. Rödel, In situ transmission electron microscopy of electric field-triggered reversible domain formation in Bi-based lead-free piezoceramics, J. Am. Ceram. Soc. 93 (2010) 2452-2455.

DOI: 10.1111/j.1551-2916.2010.03778.x

Google Scholar

[24] M. Hinterstein, M. Knapp, M. Hölzel, W. Jo, A. Cervellino, H. Ehrenberg and H. Fuess, Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics, J. Appl. Crystallogr. 43 (2010) 1314-1321.

DOI: 10.1107/s0021889810038264

Google Scholar