[1]
D.B. Miracle, The physical and mechanical properties of NiAl, Acta Metall. Mater. 41 (1993) 649-684.
Google Scholar
[2]
L.Y. Sheng, Y. Xie, T.F. Xi, J.T. Guo, Y.F. Zheng, H.Q. Ye, Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments, Mater. Sci. Eng. A 528 (2011) 8324-8331.
DOI: 10.1016/j.msea.2011.07.072
Google Scholar
[3]
N.S. Stoloff, Physical and mechanical metallurgy of Ni3Al and its alloys, Inter. Mater. Rev. 34 (1989) 153-183.
Google Scholar
[4]
L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, J.T. Guo, Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment, Intermetallics 27 (2012) 14-20.
DOI: 10.1016/j.intermet.2012.01.014
Google Scholar
[5]
L.Y. Sheng, J.T. Guo, L.Z. Zhou, H.Q. Ye, Microstructure and compressive properties of NiAl-Cr(Mo)-Dy near eutectic alloy prepared by suction casting, Mater. Sci. Technol. 26 (2010) 164-168.
DOI: 10.1179/174328408x365801
Google Scholar
[6]
L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, H.Q. Ye, Microstructure evolution and elevated temperature compressive properties of a rapidly solidified NiAl–Cr(Nb)/Dy alloy, Mater. Design 30 (2009) 2752-2755.
DOI: 10.1016/j.matdes.2008.10.022
Google Scholar
[7]
L.Y. Sheng, W. Zhang, J.T. Guo, F. Yang, Y.C. Liang, H.Q. Ye, Effect of Au addition on the microstructure and mechanical properties of NiAl intermetallic compound, Intermetallics 18 (2010) 740-744.
DOI: 10.1016/j.intermet.2009.10.015
Google Scholar
[8]
Y.F. Han, S.H. Li, M.C. Chaturvedi, Microstructural stability of the directionally solidified γ'-base superalloy IC6, Mater. Sci. Eng. A 160 (1993) 271-279.
DOI: 10.1016/0921-5093(93)90456-o
Google Scholar
[9]
V.K. Sikka, S.C. Deevi, S. Viswanathan, R.W. Swindeman, M.L. Santella, Advances in processing of Ni3Al-based intermetallics and applications, Intermetallics 8 (2000) 1329-1337.
DOI: 10.1016/s0966-9795(00)00078-9
Google Scholar
[10]
L.Y. Sheng, J.T. Guo, L.Z. Zhou, H.Q. Ye, The effect of strong magnetic field treatment on microstructure and room temperature compressive properties of NiAl–Cr(Mo)–Hf eutectic alloy, Mater Sci Eng A 500 (2009) 238-243.
DOI: 10.1016/j.msea.2008.09.020
Google Scholar
[11]
L.Y. Sheng, W. Zhang, J.T. Guo, H.Q. Ye, Microstructure and mechanical properties of Hf and Ho doped NiAl–Cr(Mo) near eutectic alloy prepared by suction casting, Mater. Charact. 60 (2009) 1311-1316.
DOI: 10.1016/j.matchar.2009.06.005
Google Scholar
[12]
L.Y. Sheng, W. Zhang, J.T. Guo, L.Z. Zhou, H.Q. Ye, Microstructure evolution and mechanical properties' improvement of NiAl–Cr(Mo)–Hf eutectic alloy during suction casting and subsequent HIP treatment, Intermetallics 17 (2009) 1115-1119.
DOI: 10.1016/j.intermet.2009.05.003
Google Scholar
[13]
L.Y. Sheng, L.J. Wang, T.F. Xi, Y.F. Zheng, H.Q. Ye, Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr(Mo, Hf) eutectic alloys, Mater. Design 32 (2011) 4810-4817.
DOI: 10.1016/j.matdes.2011.06.026
Google Scholar
[14]
L.Y. Sheng, J.T. Guo, W.L. Ren, Z.X. Zhang, Z.M. Ren, H.Q. Ye, Preliminary investigation on strong magnetic field treated NiAl–Cr(Mo)–Hf near eutectic alloy, Intermetallics 19 (2011) 143-148.
DOI: 10.1016/j.intermet.2010.08.026
Google Scholar
[15]
E.P. George, C.T. Liu, D.P. Pope, Intrinsic ductility and environmental embrittlement of binary Ni3Al, Scripta Metall. Mater. 28 (1993) 857-862.
DOI: 10.1016/0956-716x(93)90366-z
Google Scholar
[16]
C.T. Liu, C.L. White, J.A. Horton, Effect of boron on grain-boundaries in Ni3Al, Acta Metall. 33 (1985) 213-229.
DOI: 10.1016/0001-6160(85)90139-7
Google Scholar
[17]
Y.F. Gu, D.L. Lin, T.L. Lin, J.T. Guo, Ductilization of Ni3Al by alloying with zirconium, Scripta Mater. 35 (1996) 609-613.
DOI: 10.1016/1359-6462(96)00187-x
Google Scholar
[18]
J. Zhang, Y.S. Luo, Y.S. Zhao, S. Yang, The research of Microstructure and property of a low density nickel base single crystal superalloy, J Aeronautical Mater 31-S1 (2011) 90-93.
Google Scholar
[19]
K. Morsi, Review: reaction synthesis processing of Ni-Al intermetallic materials, Mater. Sci. Eng. A 299 (2001) 1-15.
Google Scholar
[20]
L.Y. Sheng, F. Yang, T.F. Xi, J.T. Guo, H.Q. Ye, Microstructure evolution and Mechanical Properties of Ni3Al /Al2O3 Composite during Self-propagation High-temperature Synthesis and Hot Extrusion, Mater. Sci. Eng. A 555 (2012) 131-138.
DOI: 10.1016/j.msea.2012.06.042
Google Scholar
[21]
L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, V.E. Ovcharenko, L.Z. Zhou, H.Q. Ye, Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion, Intermetallics 17 (2009) 572-577.
DOI: 10.1016/j.intermet.2009.01.004
Google Scholar
[22]
L.Y. Sheng, J.T. Guo, H.Q. Ye, Microstructure and mechanical properties of NiAl–Cr(Mo)/Nb eutectic alloy prepared by injection-casting, Mater. Design 30 (2009) 964-969.
DOI: 10.1016/j.matdes.2008.06.061
Google Scholar
[23]
L.Y. Sheng, J.T. Guo, T.F. Xi, B.C. Zhang, H.Q. Ye, ZrO2 strengthened NiAl/Cr(Mo, Hf) composite fabricated by powder metallurgy, Prog. Nat. Sci.: Mater. Int. 22 (2012) 231-236.
DOI: 10.1016/j.pnsc.2012.04.003
Google Scholar
[24]
L.Y. Sheng, T.F. Xi, C. Lai, J.T. Guo, Y.F. Zheng, Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis, Trans. Nonferrous Metals Soc. China 22 (2012).
DOI: 10.1016/s1003-6326(11)61203-x
Google Scholar
[25]
J.P. Lebrat, A. Varma, Self-Propagating High-Temperature Synthesis of Ni3Al, Combust. Sci. Technol. 88 (1992) 211-221.
Google Scholar
[26]
A. Hibino, S. Matsuoka. M. Kiuchi, Synthesis and sintering of Ni3Al intermetallic compound by combustion synthesis process, J Mater Process Technol 112 (2001) 127-135.
DOI: 10.1016/s0924-0136(01)00558-1
Google Scholar
[27]
B. Dutta, E.J. Palmiere, C.M. Sellars, Modelling the kinetics of strain induced precipitation in Nb microalloyed steels, Acta Mater. 49 (2001) 785-794.
DOI: 10.1016/s1359-6454(00)00389-x
Google Scholar
[28]
L.Y. Sheng, L. Nan, W. Zhang, J.T. Guo, H.Q. Ye, Microstructure and mechanical properties determined in compressive tests of quasi-rapidly solidified NiAl-Cr(Mo)-Hf eutectic alloy after hot isostatic pressure and high temperature treatments, J. Mater. Eng. Perfor. 19 (2010).
DOI: 10.1007/s11665-009-9526-3
Google Scholar
[29]
L.Y. Sheng, J.T. Guo, Y.X. Tian, L.Z. Zhou, H.Q. Ye, Microstructure and mechanical properties of rapidly solidified NiAl–Cr(Mo) eutectic alloy doped with trace Dy, J. Alloys Compd. 475 (2009) 730-734.
DOI: 10.1016/j.jallcom.2008.07.109
Google Scholar
[30]
L.Y. Sheng, J.T. Guo, W. Zhang, L.Z. Zhou, H.Q. Ye, Microstructure and mechanical properties of NiAl-Cr(Mo)-Hf/Ho near-eutectic alloy prepared by suction casting, Int. J. Mater. Res. 100 (2009) 1602-1606.
DOI: 10.3139/146.110211
Google Scholar
[31]
L.Y. Sheng, W. Zhang, Y. Xie, L.Z. Zhou, H.Q. Ye, Effects of HIP and heat treatment on microstructure and compressive properties of rapidly solidified NiAl-Cr(Mo)-Hf eutectic alloy, Acta Metall. Sin. 9 (2009) 1025-1029.
DOI: 10.1016/j.intermet.2009.05.003
Google Scholar
[32]
L.Y. Sheng, F. Yang, T.F. Xi, C. Lai, H.Q. Ye, Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling, Compos. Part B: Eng. 42 (2011) 1468-1473.
DOI: 10.1016/j.compositesb.2011.04.045
Google Scholar
[33]
L.Y. Sheng, J.T. Guo, Y.X. Tian, L.Z. Zhou, H.Q. Ye, Effect of high magnetic field treatment on the microstructure and mechanical property of NiAl-Cr(Mo)-0. 2Hf eutectic alloy, Acta Metall. Sin. 44 (2008) 524-528.
DOI: 10.3724/sp.j.1037.2009.00747
Google Scholar