Mechanical Properties and Microstructure of Nb/Nb5Si3/Cr2Nb Alloys Prepared by Spark Plasma Sintering

Article Preview

Abstract:

Through the spark plasma sintering technology (SPS), the Nb/Nb5Si3/Cr2Nb mixed powders with different volume ratios of 7:1:2 and 7:2:1 were sintered into ingots. The effects of three powder mixing methods on phase constitution, microstructure and room-temperature mechanical properties of the ternary Nb/Nb5Si3/Cr2Nb alloys were investigated. The result shows that the method of dry mixing without ball milling is advantageous for toughness, the increase of SPS temperature decreases the toughness whereas improves the hardness. The stiffening Nb5Si3 and Cr2Nb phases tend to form a continuous network, resulting in decrease of toughness. It is interesting that when the fractions of the Nb5Si3 phase larger than that of the Cr2Nb phases, these strengthening phases prefer to appear in the form of network, which is detrimental for toughness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

747-753

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] BEWLAY B P, JACKSON M R, ZHAO J C, et al, A review of very-high-temperature Nb-silicide composites [J]. Matallurgical and Transactions A, 2003, 34(10): 2043-(2052).

DOI: 10.1007/s11661-003-0269-8

Google Scholar

[2] BEWLAY B P, JACKSON M R, ZHAO J C, et al. Ultra-high temperature Nb-silicide-based composites[J]. MRS Bulletin, 2003, 28: 646-653.

DOI: 10.1557/mrs2003.192

Google Scholar

[3] Subramanian P R, Parthasarathy T A, Mendiratta M G, et al. Compressive creep behavior of Nb5Si3[J]. Scripta Metallurgica et Materialia, 1995, 32(8): 1227-1232.

DOI: 10.1016/0956-716x(95)00130-n

Google Scholar

[4] Bewlay B P, Jackson M R, Subramanian P R. Processing high-temperature refractory-metal silicide in-situ composites[J]. JOM, 1999, V51(4): 32-36.

DOI: 10.1007/s11837-999-0077-8

Google Scholar

[5] Bewlay B P, Lewandowski J J, Jackson M R. Refractory metal-intermetallic in-situ composites for aircraft engines[J]. JOM, 1997, V49(8): 44-45, 67.

DOI: 10.1007/bf02914402

Google Scholar

[6] M. Bannister, H. Shercliff, G. Bao, F. Zok and M. F. Ashby. Toughening in brittle systems by ductile bridging ligaments[J]. Acta Metallurgica et Materialia., 1992, vol. 40, pp.1531-1537.

DOI: 10.1016/0956-7151(92)90096-w

Google Scholar

[7] Y. Kimura, Y. Mishima, H. Yamaoka and N. Sekido. Processing, microstructure, and mechanical properties of (Nb)/Nb5Si3 two-phase alloys [J]. Metall. Mater. Trans. A, 2005, vol. 36A, pp.483-488.

DOI: 10.1007/s11661-005-0161-9

Google Scholar

[8] Sha J B, Hirai H, Tabaru T, et al. Toughness and strength characteristics of Nb-W-Si ternary alloys prepared by arc melting [J]. Metall Mater Trans A, 2003, 34(1): 2861.

DOI: 10.1007/s11661-003-0187-9

Google Scholar

[9] Yang Chunyan, Chen Ying, Sha Jiangbo. Effect of Cr Addition on Microstructure and Mechanical Properties of an Nb-16Si-22Ti-2Al-2Hf Alloy at Room and High Temperatures[J]. Acta aeronautica et Astronautica sinica, 2009, 31(9): 1892-1899.

DOI: 10.1016/j.intermet.2014.10.013

Google Scholar

[10] Sha J B, Hirai H, Tabaru T, et al. High-temperature strength and room-temperature toughness of Nb–W–Si–B alloys prepared by arc-melting [J]. Materials Science and Engineering A, 2004, 364: 151–158.

DOI: 10.1016/j.msea.2003.08.014

Google Scholar

[11] Sha J B, Hirai H, Tabaru T, et al. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures. [J] Metall Mater Trans A , 2003, 34(1): 85-94.

DOI: 10.1007/s11661-003-0210-1

Google Scholar

[12] SONG Li-guo1, 2, QU Shi-yu2, SONG Jin-xia2 et. Effect of Heat Treatment at 125o℃ on Microstructure of Nb-16Si-24Ti-6Cr-6Al-2Hf Alloy[J]. Materials Engineering, 2005, 12: 30.

Google Scholar

[13] W. Y. Kim, H. Tanaka and S. Hanada. Microstructure and high temperature strength at 1773 K of Nbss/Nb5Si3 composites alloyed with molybdenum. Metallurgical and Materials Transactions A, 2002, vol. 10, pp.625-634.

DOI: 10.1016/s0966-9795(02)00041-9

Google Scholar

[14] B. P. Bewlay, M. R. Jackson and A. Lipsitt. The Talance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In Situ Composite. Metallurgical and Materials Transactions A , 1996, vol. 27A, pp.3801-3808.

DOI: 10.1007/bf02595629

Google Scholar

[15] Wang X L, Wang G, Zhang K F. Microstructure and room temperature mechanical properties of hot-pressed Nb–Si–Ti–Fe alloys [J]. Journal of Alloys and Compounds, 2010, 502: 310-318.

DOI: 10.1016/j.jallcom.2010.04.208

Google Scholar

[16] Wang X L, Zhang K F. Mechanical alloying, microstructure and properties of Nb–16Si alloy [J]. Journal of Alloys and Compounds, 2010, 490: 677–683.

DOI: 10.1016/j.jallcom.2009.10.136

Google Scholar

[17] Ma C L, Kasama A, Tanaka H, et al. Microstucture and Mechanical Properties of Nb/Nb-Silicide in-situ Composites Synthesized by Reactive Hot pressing of Ball Milled Powders[J]. Mateials Transations, 2000, 41(3): 444 -451.

DOI: 10.2320/matertrans1989.41.444

Google Scholar

[18] B. W. Xiong, W. Y. Long, Z. Chen, C. Xia, H. Wan and Y. W. Yan. Effects of element proportions on microstructures of Nb/Nb5Si3 in situ composites by spark plasma sintering[J]. J. Alloys Compd., 2009, vol. 471, pp.404-407.

DOI: 10.1016/j.jallcom.2008.03.095

Google Scholar

[19] YAN Youwei1, *, CHEN Zhe1, FU Zhengyi2. Influence of Si content on the Microstructure of in-situ Nb/Nb5Si3 composites fabricated by Spark Plasma Sintering[J]. Acta Materiae Compositae Sinaca, April (2005).

Google Scholar

[20] CHU Wu-yang, QIAO Li-jie, CHEN Zhi-qi, et al. Fructure and Enviroment Fructure[M]. Beijing: Science press, (2000).

Google Scholar