Effects of Ruthenium on Microstructure and Stress Rupture Properties of a Nickel-Base Single Crystal Superalloy

Article Preview

Abstract:

The effect of Ru addition (0 wt.%, 3 wt.%, 5 wt.%), on γ morphology, elemental segregation, microstructural stability under long-term thermal exposure at 980 and stress rupture properties at 1100°C/130MPa have been studied. The results showed that with the increase of Ru content, the γ/γ eutectic volume fraction and the dendrite arm spacing decreased gradually. The γ' phase mean size in three alloys decreased with the increase of the Ru content. On the other hand, the dendrite segregation of Al, Ta towards interdendrite area and ReW towards dendrite core area was alleviated gradually with the increase of the Ru content. The increase of Ru content from 0 wt.% to 5 wt.% pronouncedly enhanced the stress rupture properties by suppressing the precipitation of TCP phases effectively at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

777-782

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hashizume, R., Yoshinari, A., Kiyono, T., Murata, Y. & Morinaga, M. in Superalloys 2004. eds K. A. Green et al. ) 53-62.

Google Scholar

[2] Hino, T., Kobayashi, T., Koizumi, Y., Harada, H. & Yamagata, T. Development of a new single crystal superalloy for industrial gas turbines. (2000).

DOI: 10.7449/2000/superalloys_2000_729_736

Google Scholar

[3] Yeh, A. C. & Tin, S. Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys. Scripta Materialia 52, 519-524 (2005).

DOI: 10.1016/j.scriptamat.2004.10.039

Google Scholar

[4] Rae, C. M. F. & Reed, R. C. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Materialia 49, 4113-4125 (2001).

DOI: 10.1016/s1359-6454(01)00265-8

Google Scholar

[5] Rae, C. M. F. et al. in Superalloys 2000. eds T. M. Pollock et al. ) 767-776 (Minerals, Metals & Materials Soc).

Google Scholar

[6] Reed, R. C., Cox, D. C. & Rae, C. M. F. Damage accumulation during creep deformation of a single crystal superalloy at 1150C. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing) 448, 88-96 (2007).

DOI: 10.1016/j.msea.2006.11.101

Google Scholar

[7] Sato, A. et al. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys. Scripta Materialia 54, 1679-1684 (2006).

DOI: 10.1016/j.scriptamat.2006.01.003

Google Scholar

[8] Yeh, A. & Tin, S. Effects of Ru on the high-temperature phase stability of Ni-base single-crystal superalloys. Metallurgical and Materials Transactions A 37, 2621-2631 (2006).

DOI: 10.1007/bf02586097

Google Scholar

[9] Feng, Q., Nandy, T. K., Tin, S. & Pollock, T. M. Solidification of high-refractory ruthenium-containing superalloys. Acta Materialia 51, 269-284 (2003).

DOI: 10.1016/s1359-6454(02)00397-x

Google Scholar

[10] Yeh, A. C., Rae, C. M. F. & Tin, S. in Superalloys 2004. 677-685 (TMS).

Google Scholar

[11] Carroll, L. J., Feng, Q. & Pollock, T. M. Interfacial dislocation networks and creep in directional coarsened Ru-containing nickel-base single-crystal superalloys. Metallurgical and Materials Transactions A 39 A, 1290-1307 (2008).

DOI: 10.1007/s11661-008-9520-7

Google Scholar

[12] Argence, D., Vernault, C., Desvallees, Y. & Fournier, D. in Superalloys 2000. eds T. M. Pollock et al. ) 829-837 (Minerals, Metals & Materials Soc).

Google Scholar

[13] Erickson, G. L. TMS-AIME. Materials Science and Engineering Warrendale, p.36 (1995).

Google Scholar

[14] A. Didier, V. C., D. Yves, F. Dominique. T.M. Pollock, R.D. Kissinger, R.R. Bowman, et al. eds. In: Superalloys 2000 (2000: 829-837).

Google Scholar

[15] Sims, C. T., Stoloff, N. S. & Hagel, W. C. Superalloys II. (Wiley, 1987).

Google Scholar

[16] Caron, P. in Superalloys 2000. eds T. M. Pollock et al. ) 737-746 (Minerals, Metals & Materials Soc).

Google Scholar