[1]
S.L. Nyakana, J.C. Fanning, R.R. Boyer, Quick reference guide for beta titanium alloys in the 00s, J. Journal of Materials Engineering and Performance. 14 (2005) 799-811.
DOI: 10.1361/105994905x75646
Google Scholar
[2]
A.X. Sha, X.W. Li, Q.R. Wang, et al., Influence of hot deformation temperature on microstructure and mechanical properties of TC18 alloy, J. The Chinese Journal of Nonferrous Metals. 15 (2005) 1167-1172.
Google Scholar
[3]
L. Yu, X. Mao, Y. Zhao, Isothermal Behavior and Microstructure Evolution of BT22 Titanium Alloy, J. Rare Metal Materials and Engineering. 36 (2007) 505-508.
Google Scholar
[4]
Y.K. Gao, Influence of shot peening on tension-tension fatigue properties of TC18 titanium alloy, J. Rare Metal Materials and Engineering. 33 (2004) 1000-1002.
Google Scholar
[5]
S. Polkin, V.L. Rodionov, A.N. Stroshkov, Structure and mechanical properties of VT22 (α+β) high strength titanium alloy semiproducts, C. Titanium'92: Science and Technology. San Diego: TMS. (1992) 1569-1572.
Google Scholar
[6]
L. Yu, X. Mao, P. Zhang, et al., Effects of heat treatment on microstructures and properties of titanium alloy BT22, J. Rare Metals Letters. 24 (2005) 21-23.
Google Scholar
[7]
H. Zhao, W. Yu, Development and application of high strength titanium alloy BT22 in aviation industry, J. Aeronautical Manufacturing Technology. 1 (2010) 85-86, 90.
Google Scholar
[8]
Y. Yang, W. Wang, B. Ma, et al., Effect of microstructure on mechanical properties of BT22 titanium alloy Bar, J. Rare Metals Letters. 26 (2007) 32-34.
Google Scholar
[9]
J. Guan, J. Lei, Y. Liu, et al., Influence of microstructures on the fracture toughness and fatigue property of TC18 titanium alloy, J. Rare Metal Materials and Engineering. 37 (2008) 717-720.
Google Scholar
[10]
H. Liu, S. Wei, J. Lei, et al., The effect of the microstructures on the mechanical properties in TC18 titanium alloy, Z. China Nonferrous Metals Society of the 12th Materials Science and alloy processing academic. (2007) 178-181.
Google Scholar
[11]
O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, A comparative study of the mechanical properties of high-strength β-titanium alloys, J. Journal of Alloys and Compounds. 457 (2008) 269-309.
DOI: 10.1016/j.jallcom.2007.03.070
Google Scholar
[12]
S.Y. Sun, L.Q. Wang, J.N. Qin, et al., Microstructural characteristics and mechanical properties of in situ synthesized (TiB+TiC)/TC18 composites, J. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 530 (2011).
DOI: 10.1016/j.msea.2011.10.029
Google Scholar
[13]
O.V. Paustovs'Kyi, V.I. Novikova, I.I. Tymofeeva, et al., Electric-spark alloying of VT22 alloy by chromium and tungsten electrode materials, J. Materials Science. 47 (2011) 120-123.
DOI: 10.1007/s11003-011-9377-6
Google Scholar
[14]
V.O. Kralya, O.H. Molyar, A.M. Khimko, et al., Fatigue characteristics of VT22 titanium alloy with wear-resistant coatings, J. Materials Science. 42 (2006) 853-857.
DOI: 10.1007/s11003-006-0155-9
Google Scholar
[15]
Y. Xu, K. Sun, Y.A. Yang, Refining mechanisms of grains in the adiabatic shear band of TC18 titanium alloy, J. Rare Metal Materials and Engineering. 40 (2011) 1454-1457.
Google Scholar
[16]
O.V. Abolikhina, S.L. Antonyuk, O.H. Molyar, Structure, strength and plasticity of semifinished products of VT22 titanium alloy, J. Materials Science. 44 (2008) 400-404.
DOI: 10.1007/s11003-008-9101-3
Google Scholar
[17]
E.A. Borisova, Titanium alloy metallographic. National Defense Industry Press, (1986).
Google Scholar