Simulation of Isothermal Nucleation of Austenite in Spheroidite Plain Carbon Steels

Article Preview

Abstract:

The austenitization is a solid phase transformation process accompanied by nucleation and nucleus growth controlled by long-range carbon diffusion. In the course of our work, a method was developed by which spheroidite model structures were constructed such a way that their different parameters (the size of ferrite grains, the average value of carbon concentration, the size of cementite spheroids) could be changed optionally. In addition, a nucleation model of free enthalpy base was created by which the difference between the two different places of nucleation can be distinguished on the basis of their free enthalpy. The effects of structure parameters, interface free enthalpies and temperature on the nucleation rate of austenite were investigated by cellular automaton simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

201-208

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Orlich, I., Rose, A., and Wiest, P., Atlas zur Wärmebehandlung der Stähle, Vols. 3–4, Verlag Stahleisen, M.B.H., Düsseldorf, (1976).

Google Scholar

[2] Bunghardt, K., Preisendanz, M., and Brandis, M., Beitrag zur Kenntnis des Umwandlungsverhaltens von Stahl 50 CrV4, Arch. Eisenhütt., Vol. 32, 1961, p.261–263.

DOI: 10.1002/srin.196103214

Google Scholar

[3] Schmidtmann, E. and Brandis, H., Beitrag zur Austenitbildung in unlegierten und niedriglegierten untereutektoidischen Stählen, Arch. Eisenhütt., Vol. 30, 1959, p.83–89.

DOI: 10.1002/srin.195903032

Google Scholar

[4] Rose, A. and Strassburg, W., Kinetik der Austenitbildung unlegierten und niedriglegierter eutektoidischer Stähle, Arch. Eisenhütt., Vol. 27, 1956, p.513–520.

DOI: 10.1002/srin.195601430

Google Scholar

[5] Hillert, M., Nilsson, K., and Törndahl, L. E., Effect of Alloying Elements on the Formation of Austenite and Dissolution of Cementite, J. Iron Steel Inst., London, Vol. 209, 1971, p.49–66.

Google Scholar

[6] Molinder, G., A Quantitative Study of the Formation of Austenite and the Solution of Cementite at Different Austenitizing Temperatures for a 1. 27 % Carbon Steel, Acta Metall., Vol. 4, 1956, p.565–571.

DOI: 10.1016/0001-6160(56)90157-2

Google Scholar

[7] Judd, R. R. and Paxton, M. W., Kinetics of Austenite Formation Iron a Spheroidized Ferrite-Carbide Aggregate, Trans. T.M.S. -A.I.M.E., Vol. 242, 1968, p.206–215.

Google Scholar

[8] Törndahl, L. E., 1968, Thesis, Royal Institute of Technology, Stockholm, Sweden.

Google Scholar

[9] Dirnfeld, S. F., Korevaar, B. M., and Van't Spijker, F., The Transformation to Austenite in a Fine Grained Tool-Steel, Metall. Trans., Vol. 5, 1974, p.1437–1444.

DOI: 10.1007/bf02646630

Google Scholar

[10] Speiche, G. R. and Szirmae, A., Formation of Austenite from Ferrite and Ferrite-Carbide Aggregates, Trans. T.M.S. -A.I.M.E., Vol. 245, 1969, p.1063–1074.

Google Scholar

[11] Roósz, A., Gácsi, Z., and Fuchs, E., Isothermal Formation of Austenite in Eutectoid Plain Carbon-Steel, Acta Metall., Vol. 31, 1983, p.509–517.

DOI: 10.1016/0001-6160(83)90039-1

Google Scholar

[12] Judd, R. R. and Paxton, M. W., Kinetics of Austenite Formation from a Spheroidized Ferrite-Carbide Aggregate, Trans. T.M.S. -A.I.M.E., Vol. 242, 1968, p.206–215.

Google Scholar

[13] T. B. Massalski, Joanne L. Murray, Lawrence Herman Bennett, Hugh Baker, Binary alloy phase diagrams, ASM International: Metals Park, OH, (1986).

Google Scholar

[14] Geiger, J., Roósz, A., Barkóczy, P., Simulation of Grain Coarsening in Two Dimensions by Cellular Automaton, Acta Mater., Vol. 49, 2001, p.623–629.

DOI: 10.1016/s1359-6454(00)00352-9

Google Scholar

[15] Information on http: /www. inf. u-szeged. hu/oktatas/jegyzetek/KubaAttila/grafika_html/szgrafika/raszter. html.

Google Scholar