Evolution of Microstructure during Hot Deformation of Pearlitic Steel

Article Preview

Abstract:

Hot deformation of pearlitic steel was carried out to examine the overall deformation response to micro structural and texture evolution. To understand the mechanisms operative during hot deformation, compression tests were carried out at various temperatures in the range 400 - 600o C and strain rates in the range 0.001-10 s-1. The flow curves were analyzed to examine the occurrence of dynamic recrystallization. The evolution of microstructure and texture of hot deformed sample is analysed using EBSD and X-ray texture goniometer respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

459-462

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Song, D. Ponge, D. Raabe , R. Kaspar, Acta Mater. 53, 845 (2005).

Google Scholar

[2] P. Payson. W.L. Hodapp, J. Leeder, Trans ASM. 27, 306(1940).

Google Scholar

[3] A.H. Holtzman. J.C. Danko, R.D. Stout, Trans TMS-AIME, 212 475(1958).

Google Scholar

[4] M. Kaldor. Acta metall. 10, 887,(1962).

Google Scholar

[5] J.L. Robbins, O.C. Shepard and O.D. Sherby, J. Iron Steel Inst. 202, 804 (1964).

Google Scholar

[6] E. A. Chojnowski W. J. McG. Tegart, Metal Sci. J. 2, 14 (1968).

Google Scholar

[7] O.D. Sherby, M.J. Harrigan, L. Chamagne, C. Sauve, Trans ASM, 62, 575 (1969).

Google Scholar

[8] H. Paqueton and A. Pineau, J. Iron Steel lnst. 209, 991 (1971).

Google Scholar

[9] D. F. Lupton and D. H. Warrington. Metal. Sci. J. 6, 200 (1972).

Google Scholar

[10] D. Goodchild, Stand J. Metals 1, 235 (1972).

Google Scholar

[11] S. Chattopadhyay and C. M. Sellars, Trans. Indian Inst. Metals 29, 115 (1976).

Google Scholar

[12] O. E. Cullen, Metal frog. 64, 79 (1953).

Google Scholar

[13] J.J. Jonas, C.M. Sellars, W.J.McG Tegart, Metallurgical Reviews 130,1-33, (1969).

Google Scholar

[14] T. Sakai and J.J. Jonas, Acta Metall.32, 189-209(1984).

Google Scholar

[15] T. Gladman, I. McIvor and F.B. Pickering, J. Iron Steel Inst. 210, 916(1972)

Google Scholar

[16] P. Kumar, N.P. Gurao, A. Haldar and S. Suwas, ISIJ International, Vol. 51 (2011),679–684.

Google Scholar

[17] P. Kumar, N.P. Gurao, A. Haldar, and S. Suwas, Metall. Mater. Trans. A, Vol. 43A, 2012—(2043)

Google Scholar

[18] B.E. O'Donnelly, R.L. Reuben and T.N. Baker, Metals Tech. 11, 45 (1984).

Google Scholar

[19] I.P. Kemp, Mat. Forums. 14, 270 (1990).

Google Scholar

[20] V.N. Gridnev and V.G. Gavrilyuk: Phys. Metals, 1982, vol. 4,531–51.

Google Scholar

[21] V.G. Gavriljuk: Mater. Sci. Eng. A, 2003, vol. 345A,81-89.

Google Scholar

[22] J. Languillaume, G. Kapelski, and B. Baudelet: Acta Mater., 1997,vol. 45,1201–12.

Google Scholar

[23] X. Sauvage, J. Copreaux, F. Danoix, and D. Blavette: Phil. Mag.,2000, vol. A80,781–96.

Google Scholar

[24] M. Zelin: Acta Mater., 2002, vol. 50, 4431–47.

Google Scholar

[25] R.K. Abu Al-Rub and G.Z. Voyiadjis: Int. J. Plast, 2006, vol. 22, 654–84.

Google Scholar