Feasibility of Hydrothermal Nitrogen Doping Process for Enhancing Visible Light Photocatalytic Activity of Metatitanic Acid Powder

Article Preview

Abstract:

Wide band-gap photocatalyst is active only under UV light irradiation. Nitrogen doping into photocatalyst is able to extend the light absorption to the visible light region, allowing more solar energy to be utilized in photocatalytic applications. The hydrothermal process is widely applied for the preparation of nitrogen-doped TiO2. The hydrothermal method is attractive for its simplicity and environment friendly conditions. Metatitanic acid (MTA) is an industrially available intermediate product in sulfate process for TiO2 production, which is mesoporous material with large specific surface area and pore volume. In this work, MTA powder was hydrothermally treated with three types of nitrogen sources (urea, hexamethylenetetramine, and ammonium hydroxide) and subsequently heat-treated in N2 flow. The results of UV-Vis diffuse reflection spectra and XPS show that it is possible to dope the nitrogen dopant into MTA by the hydrothermal process and the post-heat treatment. Higher photocatalytic activity in photodegrading rhodamine B dye under visible light was obtained when processed in ammonium hydroxide (MTA-A), but weaker in the samples of urea (MTA-U) and hexamethylenetetramine (MTA-H).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-45

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37–38.

DOI: 10.1038/238037a0

Google Scholar

[2] T. Ibusuki, K. Takeuchi, Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis, J. Mol. Catal. 88 (1994) 93–102.

DOI: 10.1016/0304-5102(93)e0247-e

Google Scholar

[3] M. R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.

DOI: 10.1021/cr00033a004

Google Scholar

[4] A. Fujishima, N.R. Tata, A.T. Donald, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1–21.

Google Scholar

[5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y., Taga, Visible-light photocatalysis in nitrogen-doped titanium dioxide, Science 293 (2001) 269–271.

DOI: 10.1126/science.1061051

Google Scholar

[6] A., Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[7] A.V., Emeline, V.N., Kuznetsov, V.K., Rybchuk, N. Serpone, Visible-light-active titania photocatalysts: The case of N-doped TiO2s-properties and some fundamental issues, Int. J. Photoenergy 2008 (2008) 258394.

DOI: 10.1155/2008/258394

Google Scholar

[8] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B: Environ. 125 (2012) 331–349.

DOI: 10.1016/j.apcatb.2012.05.036

Google Scholar

[9] C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B 109 (2005), 11414–11419.

DOI: 10.1021/jp051756t

Google Scholar

[10] J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts, J. Am. Chem. Soc. 131 (2009) 12290–12297.

DOI: 10.1021/ja903781h

Google Scholar

[11] Y. Aita, M. Komatsu, S. Yin, T. Sato, Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process, J. Solid State Chem., 177 (2004) 3235–3238.

DOI: 10.1016/j.jssc.2004.04.048

Google Scholar

[12] F. Peng, L. Cai, L. Huang, H. Yu, H. Wang, Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method, Phys. Chem. Solids, 69 (2008) 1657–1664.

DOI: 10.1016/j.jpcs.2007.12.003

Google Scholar

[13] M. D'Arienzo, R. Scotti, L. Wahba, C. Battochhio, E. Bemporad, A. Nale, F. Morazzoni, Hydrothermal N-doped TiO2: Explaining photocatalytic properties by electronic and magnetic identification of N active sites, Appl. Catal., B, 93 (2009) 149–155.

DOI: 10.1016/j.apcatb.2009.09.024

Google Scholar

[14] X. Wang, T.-T. Lim, Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C–N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity, Appl. Catal., A, 399 (2011) 233–241.

DOI: 10.1016/j.apcata.2011.04.002

Google Scholar

[15] C.-C. Hu, T.-C. Hsu, L.-H. Kao, One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity, Int. J. Photoenergy, 2012 (2012) Article ID 391958.

DOI: 10.1155/2012/391958

Google Scholar