Physical Modelling the Microstructure Formation in Advanced High-Strength Steels

Article Preview

Abstract:

For the production and development of Advanced High-Strength Steels adequate understanding of the formation mechanisms of the metallic microstructure is crucial. The superior properties of these steels are based on a sometimes delicate balance between thermodynamic (in) stability and dynamic processes, in which thermodynamic driving force and interface kinetics determine the development of the microstructure of the steel. In order to achieve further development and optimisation of such steels, experimental and modelling studies should go beyond microstructural characterisation in terms of average properties only. In this paper some examples will be given in which full (3D-) microstructures are simulated on the basis of the evolution of diffusional transformations. Although nucleation is not understood to sufficient extent to be predicted quantitatively, growth can adequately be described as governed by short-range diffusion at the interface (the basis for the interface mobility) and, in case of a partitioning phase transformation, the long-range diffusion behaviour (most notably of carbon). Whereas in the literature often one of the two processes is assumed to be rate-determining (interface control or diffusion control), physical modelling taking both into account ("mixed-mode growth") has also been effectuated. The widely used technique of Phase Field modelling and an alternative mixed-mode approach based on Cellular Automata will be presented and compared in this paper. Whereas Phase Field modelling is applicable to a wider range of processes, the Cellular-Automata method is highly efficient and allows 3D-simulations of entire process cycles within very limited computation times. Examples of these modelling techniques applied to the development of microstructures in Dual-Phase and Quenching-&-Partitioning steels are given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-209

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Honeycombe RWK, Bhadeshia HKDH (2000), Steels: microstructures and properties, 2nd edition, Butterworth & Heinemann, Oxford

Google Scholar

[2] Matlock DK, Speer JG (2009). Third generation of AHSS: microstructure design concepts, in: Microstructure and texture in steels, ed. Springer, London, p.185–205

DOI: 10.1007/978-1-84882-454-6_11

Google Scholar

[3] http://www.worldsteel.org

Google Scholar

[4] Kolmogorov AN (1937), Izv. Akad. Nauk SSSR Ser. Mat. 3:355, Johnson WA, Mehl RF (1939), Trans. AIME 135:416, Avrami M (1939), J. Chem. Phys. 7:1103, Avrami M (1940), J. Chem. Phys. 8:212, Avrami M (1941), J. Chem. Phys. 9:177

DOI: 10.1039/c3cp50909e

Google Scholar

[5] Wheeler AA, Boettinger WJ, McFadden GB (1992), Phys. Rev. A 45:7424

Google Scholar

[6] Steinbach I, Pezzolla F, Nestler B, Seeßelberg M, Prieler R, Schmitz GJ et al. (1996) Physica D 94:135

DOI: 10.1016/0167-2789(95)00298-7

Google Scholar

[7] Tiaden J, Nestler B, Diepers HJ, Steinbach I (1998) Physica D 115:73

Google Scholar

[8] Nakajima K, Apel M, Steinbach I (2006), Acta Mater. 54:3665

Google Scholar

[9] Caginalp G (1989), Phys. Rev. A 39:5887

Google Scholar

[10] Kim SG, Kim WT, Suzuki T (1998), Phys. Rev. E 58:3316

Google Scholar

[11] Karma A (1994), Phys. Rev. E 49:2245

Google Scholar

[12] Pariser G, Shaffnit P, Steinbach I, Bleck W (2001), Steel Res. 72:354

Google Scholar

[13] Yeon DH, Cha PR, Yoon JK (2001), Scripta Materialia 45:661

Google Scholar

[14] Loginova I, Odqvist J, Amberg G, Ågren J (2003), Acta Mater. 51:1327

Google Scholar

[15] Loginova I, Ågren J, Amberg G (2004), Acta Materialia 52:4055

Google Scholar

[16] Mecozzi MG, Sietsma J, van der Zwaag S (2005), Acta Mater. 53:1431

Google Scholar

[17] Huang CJ, Browne DJ, McFadden S (2006), Acta Mater. 54:11

Google Scholar

[18] Militzer M, Mecozzi MG, Sietsma J, van der Zwaag S (2006), Acta Mater. 54:3961

Google Scholar

[19] Takahama Y, Santofimia MJ, Mecozzi MG, Zhao L, Sietsma J (2012), Acta Mater. 60:2916

Google Scholar

[20] Kumar M, Sasikumar R, Kesavan Nair P (1998), Acta Metall. 46:6291

Google Scholar

[21] Zhang L, Zhang CB, Zhang YM, Liu XH, Wang GD (2002), J. Mater. Res. 17:2251

Google Scholar

[22] Bos C, Mecozzi MG, Sietsma J (2010), Comp. Mater. Sci. 48:692

Google Scholar

[23] Rees GI, Bhadeshia HKDH (1992), Mat. Sci. Techn. 8:985

Google Scholar

[24] Matsuda H, Bhadeshia HKDH (2004), Proc. Roy. Soc. London A 460:1707

Google Scholar

[25] Quidort D, Brechet YJM (2002), ISIJ Int. 42:1010

Google Scholar

[26] van Bohemen SMC, Sietsma J (2008), Int. J. Mater. Res. 99:7

Google Scholar

[27] Koistinen DP, Marburger RE (1959), Acta Metall. 7:59

Google Scholar

[28] Bos C (2010), private communication

Google Scholar

[29] Christian JW (1975), The theory of phase transformations in metals and alloys, ed. Butterworth & Heinemann

Google Scholar

[30] Mecozzi MG, Militzer M, Sietsma J, van der Zwaag S (2008), Met. Mater. Trans. A 39:1237

Google Scholar

[31] Enomoto M, Aaronson HI (1986), Metall. Trans. A 17:1385

Google Scholar

[32] Lange WF, Enomoto M, Aaronson HI (1988), Metall. Trans. A 19:427

Google Scholar

[33] Huang WM, Hillert M (1996), Met. Mater. Trans. A 27:480

Google Scholar

[34] Offerman SE, van Dijk NH, Sietsma J, Grigull S, Lauridsen EM, Margulies L, Poulsen HF, Rekveldt MTh, van der Zwaag S (2002), Science 298:1003

DOI: 10.1126/science.1076681

Google Scholar

[35] Zhang GH, Takeuchi T, Enomoto M, Adachi Y (2011), Met. Mater. Trans. A 42:1597

Google Scholar

[36] Porter DA, Easterling KE (1992), Phase transformations in metals and alloys, ed. Chapman & Hill, London, 2nd edition

Google Scholar

[37] Shibata H, Arai Y, Suzuki M, Emi T (2000), Met. Mater. Trans. B 31:981

Google Scholar

[38] Phelan D, Reid M, Dippenaar R (2008), Mater. Sci. Eng. A 477:226

Google Scholar

[39] Hillert M, Höglund L (2006), Scripta Mater. 54:1259

Google Scholar

[40] Bos C, Sietsma J (2009), Acta Materialia 57:136

Google Scholar

[41] Zener C (1949), J. Appl. Phys. 20:950

Google Scholar

[42] Bhadeshia HKDH, Svennsson LE, Gretoft B (1985) Acta Metall. 33:1271

Google Scholar

[43] Vandermeer RA (1990), Acta Metall. Mater. 138:2461

Google Scholar

[44] Hultgren A (1947), Trans. ASM, p.915

Google Scholar

[45] Hillert M, Ågren J (2004), Scripta Mater. 50:697

Google Scholar

[46] Rudnizki J, Böttger B, Prahl U, Bleck W (2011), Met. Mater. Trans. A 42:2516

Google Scholar

[47] Coates DE (1973), Metall. Trans. 4:2313

Google Scholar

[48] Kop TA, van Leeuwen Y, Sietsma J, van der Zwaag S (2000), ISIJ Int. 40:713

Google Scholar

[49] Svoboda J, Fischer FD, Fratzl P, Gamsjäger E, Simha NK (2001), Acta Mater. 49:1249

Google Scholar

[50] Krielaart GP, Sietsma J, van der Zwaag S (1997), Mater. Sci. Eng. A 237:216

Google Scholar

[51] Sietsma J, van der Zwaag S (2004), Acta Mater. 52:4143

Google Scholar

[52] Bos C, Sietsma J (2007), Scripta Mater. 57:1085

Google Scholar

[53] Cotrina E, Iza-media A, Lopez B, Gutierrez I (2004), Met. Mater. Trans. A 35:93

Google Scholar

[54] Karma A, Rappel WJ (1996), Phys. Rev. Lett. 77:4050

Google Scholar

[55] Karma A, Rappel WJ (1998), Phys. Rev. E 57:4323

Google Scholar

[56] Jeong JH, Goldenfeld N, Dantzig JA (2001), Phys. Rev. E 64:041602

Google Scholar

[57] http://www.micress.de

Google Scholar

[58] Mecozzi MG, Eiken J, Apel M, Sietsma J (2011), Comp. Mater. Sci. 50:1846

Google Scholar

[59] Bronfin BM, Gol'dshteyn MI, Yemel'yanov AA, Shifman AZ (1985), Phys. Met. Metall. 59:129

Google Scholar

[60] Zaefferer S, Ohlert J, Bleck W (2004), Acta Mater. 53:2765

Google Scholar

[61] Rudnizki J (2011), Through-process model for the microstructure of Dual-Phase steel, Ph.D.-thesis, RWTH Aachen

Google Scholar

[62] Speer JG, Streicher AM, Matlock DK, Rizzo FC, Krauss G (2003), in: Damm EB, Merwin M, editors: Austenite formation and decomposition, Warrendale, PA; TMS/ISS, p.505

Google Scholar

[63] Speer JG, Matlock DK, Edmonds DV (2005), Mater. Res. 8:417

Google Scholar

[64] Santofimia MJ, Zhao L, Petrov RH, Kwakernaak C, Sloof WG, Sietsma J (2011), Acta Mater. 59:6059

DOI: 10.1016/j.actamat.2011.06.014

Google Scholar

[65] Santofimia MJ, Zhao L, Sietsma J (2009), Met. Mater. Trans. A 40:46

Google Scholar

[66] Santofimia MJ, Speer JG, Clarke AG, Zhao L, Sietsma J (2009), Acta Mater. 57:4548

Google Scholar

[67] Speer JG, Matlock DK, De Cooman BC, Schroth JG (2003), Acta Mater. 51:2611

Google Scholar

[68] Speer JG, Hackenberg RE, De Cooman BC, Matlock DK (2007), Phil. Mag. Letters 87:379

Google Scholar

[69] Santofimia MJ, Zhao L, Sietsma J (2008), Scripta Mater. 59:159

Google Scholar

[70] Olmsted DL, Holm EA, Foiles SM (2009), Acta Mater. 57:3704

Google Scholar

[71] Bos C, Sietsma J, Thijsse BJ (2006), Phys. Rev. B 73:104117

Google Scholar

[72] Purdy GR, Brechet YJM (1995), Acta Metall. Mater. 43:3763

Google Scholar

[73] Hillert M (1999), Acta Materialia 47:4481

Google Scholar

[74] Fazeli F, Militzer M (2005), Met. Mater. Trans. A 36:1395

Google Scholar

[75] Enomoto M (1999), Acta Mater. 47:3533

Google Scholar

[76] Wang YU, Khachaturyan AG (1997), Acta Mater. 45:759

Google Scholar

[77] Wang YU, Jin YM, Khachaturyan AG (2004) Acta Mater. 52:1039

Google Scholar

[78] Yeddu HK, Malik A, Ågren J, Amberg G, Borgenstam A (2012), Acta Mater. 60:1538

Google Scholar

[79] Yeddu HK, Borgenstam A, Hedström P, Ågren J (2012), Mat. Sci. Eng A 538:173

Google Scholar

[80] Kundin J, Raabe D, Emmerich H (2011), J. Mech. Phys. Solids 59:(2082)

Google Scholar