Analysis of Stresses in CFRP Composite Plates Drilled with Conventional and Abrasive Water Jet Machining

Article Preview

Abstract:

The aim of this paper is to analyze the influence of two machining processes on the mechanical behaviour of composite plates under cyclic loading. For this purpose, an experimental study using several CFRP plates drilled with conventional machining and non-conventional machining (abrasive water jet) was carried out. Digital image correlation and static tests using an Instron 4206 tester were performed. In addition, infrared thermography (IR) and fatigue tests were also performed to assess temperature and damage evolutions and also the stiffness degradation. Fatigue results have shown that the damage accumulation in specimens drilled with conventional machining was higher than the abrasive water jet ones. Furthermore, the endurance limit for plates drilled conventionally was approximately 10% higher than those drilled with abrasive water jet. This difference was related to the initial surface integrity after machining induced by the difference in the mechanism of material's removal between the two processes. The difference in surface texture was responsible for the initiation of stress concentration sites as evident from IR camera’s stress analysis. This was confirmed by SEM tests conducted after a destructive sectioning of the specimens before fatigue testing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-143

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lucintel Market Research, Growth opportunities in the Carbon Fiber Market 2010-2015, LUCINTEL, Dallas, Texas,. Available at <www.lucintel.com/carbon_fiber_market.aspx>, 2010.

Google Scholar

[2] G. Norris, G. Thomas, M. Wagner, C. Smith, Boeing 787 Dreamliner: Flying redefined, first ed., Aerospace technical publications international, Perth, Western Australia, 2005.

Google Scholar

[3] B. Gunston, Airbus: The complete story, second ed., Haynes publishing, Sparkford, Yeovil, Somerset UK, 2009.

Google Scholar

[4] A. P. Mouritz, E. Gellert, P. Burchill, K. Challis, Review of advanced composite structures for naval ships and submarines, Composite Structures, 53 (2001) 21-42.

DOI: 10.1016/s0263-8223(00)00175-6

Google Scholar

[5] N. Bhatnagar, D. Nayak, I. Singh, H. Chouhan, P. Mahajan, Determination of machining-induced damage characteristics of fiber reinforced plastic composite laminates, Materials and Manufacturing Processes, 19 (2004) 1009-1023.

DOI: 10.1081/amp-200035177

Google Scholar

[6] E. Persson, I. Eriksson, L. Zackrisson, Effects of hole machining defects on strength and fatigue life of composite laminates, Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing), 28 (1997) 141-151.

DOI: 10.1016/s1359-835x(96)00106-6

Google Scholar

[7] W. König, C. Wulf, P. Graß, H. Willerscheid, Machining of fibre reinforced plastics, CIRP Annals - Manufacturing Technology, 34 (1985) 537-548.

DOI: 10.1016/s0007-8506(07)60186-3

Google Scholar

[8] S. Abrate, D. A. Walton, Machining of composite materials. Part I: Traditional methods, Composites Manufacturing, 3 (1992) 75-83.

DOI: 10.1016/0956-7143(92)90119-f

Google Scholar

[9] J. P. Davim, P. Reis, Drilling carbon fiber reinforced plastics manufactured by autoclave - experimental and statistical study, Materials and Design, 24 (2003) 315-324.

DOI: 10.1016/s0261-3069(03)00062-1

Google Scholar

[10] R. Zitoune, F. Collombet, F. Lachaud, R. Piquet, P. Pasquet, Experiment-calculation comparison of the cutting conditions representative of the long fiber composite drilling phase, Composites Science and Technology, 65 (2005) 455-466.

DOI: 10.1016/j.compscitech.2004.09.028

Google Scholar

[11] Z. M. Bi, B. Hinds, Y. Jin, R. Gibson, P. McToal, Studies on composite drilling – The state of the art, in: J. P. Davim (Eds.), Drilling of Composite Materials, Nova Science Publisher, New York, 2009, pp.137-173.

Google Scholar

[12] R. Zitoune, F. Collombet, Numerical prediction of the thrust force responsible of delamination during the drilling of the long-fibre composite structures, Composites Part A, 38 (2007) 858-866.

DOI: 10.1016/j.compositesa.2006.07.009

Google Scholar

[13] M. Torres, J. L. Gonzalez, H. Hernandez, Residual strength and fracture path for drilled epoxy-glass composites, Advanced Materials Research, 65 (2009) 89-96.

DOI: 10.4028/www.scientific.net/amr.65.89

Google Scholar

[14] D. Arola, M. L. McCain, Surface texture and the stress concentration factor for FRP components with holes, Journal of Composite Materials, 37(2003) 1439-1460.

DOI: 10.1177/0021998303034462

Google Scholar

[15] R. Zitoune, V. Krishnaraj, F. Collombet, Study of drilling of composite material and aluminium stack, Composite Structures, 92 (2010) 1246-1255.

DOI: 10.1016/j.compstruct.2009.10.010

Google Scholar

[16] J. P. Davim, P. Reis, Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments, Journal of Materials Processing Technology, 160 (2005) 160-167.

DOI: 10.1016/j.jmatprotec.2004.06.003

Google Scholar

[17] R. Zitoune, L. Crouzeix, F. Collombet, T. Tamine, Y -. Grunevald, Behaviour of composite plates with drilled and moulded hole under tensile load, Composite Structures, 93 (2011) pp.2384-2391.

DOI: 10.1016/j.compstruct.2011.03.027

Google Scholar

[18] M. Tercan, O. Asi, A. Aktaş, Determination of the critical crack length of notched weft-knitted glass fiber variable width composite plates, Composite Structures, 77 (2007) 111-119.

DOI: 10.1016/j.compstruct.2006.04.072

Google Scholar

[19] J. M. Whitney, R. J. Nuismer, Stress fracture criteria for laminated composites containing stress concentrations, Journal of Composite Materials, 8 (1974) 253-265.

DOI: 10.1177/002199837400800303

Google Scholar

[20] J. Awerbuch, M. S.Madhukar, Notched strength of composite laminates: predictions and experiments - A Review, Journal of Reinforced Plastics and Composites, 85 (1985) 3-159.

DOI: 10.1177/073168448500400102

Google Scholar

[21] L. Toubal, M. Karama, B. Lorrain, Stress concentration in a circular hole in composite plate, Composite Structures, 68 (2005) 31-36.

DOI: 10.1016/j.compstruct.2004.02.016

Google Scholar

[22] J. D. Fordham, R. Pilkington, C. C. Tang, The effect of different profiling techniques on the fatigue performance of metallic membranes of AISI 301 and Inconel 718, International Journal of Fatigue, 19 (1997) 487-501.

Google Scholar

[23] D. D. Arola, M. Ramulu, Net-Shape machining and the process-dependent failure of fiber-reinforced plastics under static loads, Journal of Composites Technology and Research, 20 (1998) 210-220.

DOI: 10.1520/ctr10240j

Google Scholar

[24] P. Ghidossi, M. E. Mansori, F. Pierron, Influence of specimen preparation by machining on the failure of polymer matrix off-axis tensile coupons, Composites Science and Technology, 66 (2006) 1857-1872.

DOI: 10.1016/j.compscitech.2005.10.009

Google Scholar

[25] L. Toubal, Approches analytique et expérimentale de l'endommagement par fatigue d'un composite carbone/epoxy. Phd. Thesis, Paul Sabatier university, Toulouse. France 2004.

Google Scholar

[26] L. Toubal, M. Karama, B. Lorrain, Damage evolution and infrared thermography in woven composite laminates under fatigue loading, International Journal of Fatigue, 28 (2006) 1867-1872.

DOI: 10.1016/j.ijfatigue.2006.01.013

Google Scholar

[27] W. Grzesik, J. Rech, K. Żak, C. Claudin, Machining performance of pearlitic–ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools, International Journal of Machine Tools and Manufacture, 49 (2009) 125-133.

DOI: 10.1016/j.ijmachtools.2008.10.003

Google Scholar

[28] J. C. Krapez, D. Pacou, C. Bertin, Application of lock-in thermography to rapid evaluation of fatigue limit in metals, ONERA-TP--00-45, Office National d'Etudes et de Recherches Aerospatiales (ONERA), Chatillon, France, Available at <http://publications.onera.fr/exl-doc/305222.pdf>, 2000.

DOI: 10.5270/esa-xxpt0lc

Google Scholar

[29] M. P. Luong, Infrared thermographic scanning of fatigue in metals, Nuclear Engineering and Design, 158 (1995) 363-376.

DOI: 10.1016/0029-5493(95)01043-h

Google Scholar

[30] M. P. Luong, Fatigue limit evaluation of metals using an infrared thermographic technique, Mechanics of Materials, 28 (1998) 155-163.

DOI: 10.1016/s0167-6636(97)00047-1

Google Scholar

[31] G. La Rosa, A. Risitano, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, International Journal of Fatigue, 22 (2000) 65-73.

DOI: 10.1016/s0142-1123(99)00088-2

Google Scholar

[32] P. K. Liaw, H. Wang, L. Jiang, B. Yang, J. Y. Huang, R. C. Kuo, J. G. Huang, Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz, Scripta Materialia, 42 (2000) 389-395.

DOI: 10.1016/s1359-6462(99)00358-9

Google Scholar

[33] B. Yang, P. K. Liaw, H. Wang, L. Jiang, J. Y. Huang, R. C. Kuo, J. G. Huang, Thermographic investigation of the fatigue behavior of reactor pressure vessel steels, Materials Science and Engineering: A, 314 (2001) 131-139.

DOI: 10.1016/s0921-5093(00)01910-9

Google Scholar

[34] K. Kurashiki, M. Iwamoto, Fatigue damage evaluation of GFRP using infrared thermography-effects of matrix resin and fiber content on evaluation of fatigue damage, Journal of the Society of Materials Science, Japan, 52 (2003) 1253-1257.

DOI: 10.2472/jsms.52.1253

Google Scholar

[35] A. Chrysochoos, Infrared thermography, a potential tool for analysing the material behaviour, Mécanique & Industries, 3 (2002) 3-14.

Google Scholar

[36] B. Wei, S. Johnson, R. Haj-Ali, A stochastic fatigue damage method for composite materials based on markov chains and infrared thermography, International Journal of Fatigue, 32 (2010) 350-360.

DOI: 10.1016/j.ijfatigue.2009.07.010

Google Scholar