[1]
Lucintel Market Research, Growth opportunities in the Carbon Fiber Market 2010-2015, LUCINTEL, Dallas, Texas,. Available at <www.lucintel.com/carbon_fiber_market.aspx>, 2010.
Google Scholar
[2]
G. Norris, G. Thomas, M. Wagner, C. Smith, Boeing 787 Dreamliner: Flying redefined, first ed., Aerospace technical publications international, Perth, Western Australia, 2005.
Google Scholar
[3]
B. Gunston, Airbus: The complete story, second ed., Haynes publishing, Sparkford, Yeovil, Somerset UK, 2009.
Google Scholar
[4]
A. P. Mouritz, E. Gellert, P. Burchill, K. Challis, Review of advanced composite structures for naval ships and submarines, Composite Structures, 53 (2001) 21-42.
DOI: 10.1016/s0263-8223(00)00175-6
Google Scholar
[5]
N. Bhatnagar, D. Nayak, I. Singh, H. Chouhan, P. Mahajan, Determination of machining-induced damage characteristics of fiber reinforced plastic composite laminates, Materials and Manufacturing Processes, 19 (2004) 1009-1023.
DOI: 10.1081/amp-200035177
Google Scholar
[6]
E. Persson, I. Eriksson, L. Zackrisson, Effects of hole machining defects on strength and fatigue life of composite laminates, Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing), 28 (1997) 141-151.
DOI: 10.1016/s1359-835x(96)00106-6
Google Scholar
[7]
W. König, C. Wulf, P. Graß, H. Willerscheid, Machining of fibre reinforced plastics, CIRP Annals - Manufacturing Technology, 34 (1985) 537-548.
DOI: 10.1016/s0007-8506(07)60186-3
Google Scholar
[8]
S. Abrate, D. A. Walton, Machining of composite materials. Part I: Traditional methods, Composites Manufacturing, 3 (1992) 75-83.
DOI: 10.1016/0956-7143(92)90119-f
Google Scholar
[9]
J. P. Davim, P. Reis, Drilling carbon fiber reinforced plastics manufactured by autoclave - experimental and statistical study, Materials and Design, 24 (2003) 315-324.
DOI: 10.1016/s0261-3069(03)00062-1
Google Scholar
[10]
R. Zitoune, F. Collombet, F. Lachaud, R. Piquet, P. Pasquet, Experiment-calculation comparison of the cutting conditions representative of the long fiber composite drilling phase, Composites Science and Technology, 65 (2005) 455-466.
DOI: 10.1016/j.compscitech.2004.09.028
Google Scholar
[11]
Z. M. Bi, B. Hinds, Y. Jin, R. Gibson, P. McToal, Studies on composite drilling – The state of the art, in: J. P. Davim (Eds.), Drilling of Composite Materials, Nova Science Publisher, New York, 2009, pp.137-173.
Google Scholar
[12]
R. Zitoune, F. Collombet, Numerical prediction of the thrust force responsible of delamination during the drilling of the long-fibre composite structures, Composites Part A, 38 (2007) 858-866.
DOI: 10.1016/j.compositesa.2006.07.009
Google Scholar
[13]
M. Torres, J. L. Gonzalez, H. Hernandez, Residual strength and fracture path for drilled epoxy-glass composites, Advanced Materials Research, 65 (2009) 89-96.
DOI: 10.4028/www.scientific.net/amr.65.89
Google Scholar
[14]
D. Arola, M. L. McCain, Surface texture and the stress concentration factor for FRP components with holes, Journal of Composite Materials, 37(2003) 1439-1460.
DOI: 10.1177/0021998303034462
Google Scholar
[15]
R. Zitoune, V. Krishnaraj, F. Collombet, Study of drilling of composite material and aluminium stack, Composite Structures, 92 (2010) 1246-1255.
DOI: 10.1016/j.compstruct.2009.10.010
Google Scholar
[16]
J. P. Davim, P. Reis, Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments, Journal of Materials Processing Technology, 160 (2005) 160-167.
DOI: 10.1016/j.jmatprotec.2004.06.003
Google Scholar
[17]
R. Zitoune, L. Crouzeix, F. Collombet, T. Tamine, Y -. Grunevald, Behaviour of composite plates with drilled and moulded hole under tensile load, Composite Structures, 93 (2011) pp.2384-2391.
DOI: 10.1016/j.compstruct.2011.03.027
Google Scholar
[18]
M. Tercan, O. Asi, A. Aktaş, Determination of the critical crack length of notched weft-knitted glass fiber variable width composite plates, Composite Structures, 77 (2007) 111-119.
DOI: 10.1016/j.compstruct.2006.04.072
Google Scholar
[19]
J. M. Whitney, R. J. Nuismer, Stress fracture criteria for laminated composites containing stress concentrations, Journal of Composite Materials, 8 (1974) 253-265.
DOI: 10.1177/002199837400800303
Google Scholar
[20]
J. Awerbuch, M. S.Madhukar, Notched strength of composite laminates: predictions and experiments - A Review, Journal of Reinforced Plastics and Composites, 85 (1985) 3-159.
DOI: 10.1177/073168448500400102
Google Scholar
[21]
L. Toubal, M. Karama, B. Lorrain, Stress concentration in a circular hole in composite plate, Composite Structures, 68 (2005) 31-36.
DOI: 10.1016/j.compstruct.2004.02.016
Google Scholar
[22]
J. D. Fordham, R. Pilkington, C. C. Tang, The effect of different profiling techniques on the fatigue performance of metallic membranes of AISI 301 and Inconel 718, International Journal of Fatigue, 19 (1997) 487-501.
Google Scholar
[23]
D. D. Arola, M. Ramulu, Net-Shape machining and the process-dependent failure of fiber-reinforced plastics under static loads, Journal of Composites Technology and Research, 20 (1998) 210-220.
DOI: 10.1520/ctr10240j
Google Scholar
[24]
P. Ghidossi, M. E. Mansori, F. Pierron, Influence of specimen preparation by machining on the failure of polymer matrix off-axis tensile coupons, Composites Science and Technology, 66 (2006) 1857-1872.
DOI: 10.1016/j.compscitech.2005.10.009
Google Scholar
[25]
L. Toubal, Approches analytique et expérimentale de l'endommagement par fatigue d'un composite carbone/epoxy. Phd. Thesis, Paul Sabatier university, Toulouse. France 2004.
Google Scholar
[26]
L. Toubal, M. Karama, B. Lorrain, Damage evolution and infrared thermography in woven composite laminates under fatigue loading, International Journal of Fatigue, 28 (2006) 1867-1872.
DOI: 10.1016/j.ijfatigue.2006.01.013
Google Scholar
[27]
W. Grzesik, J. Rech, K. Żak, C. Claudin, Machining performance of pearlitic–ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools, International Journal of Machine Tools and Manufacture, 49 (2009) 125-133.
DOI: 10.1016/j.ijmachtools.2008.10.003
Google Scholar
[28]
J. C. Krapez, D. Pacou, C. Bertin, Application of lock-in thermography to rapid evaluation of fatigue limit in metals, ONERA-TP--00-45, Office National d'Etudes et de Recherches Aerospatiales (ONERA), Chatillon, France, Available at <http://publications.onera.fr/exl-doc/305222.pdf>, 2000.
DOI: 10.5270/esa-xxpt0lc
Google Scholar
[29]
M. P. Luong, Infrared thermographic scanning of fatigue in metals, Nuclear Engineering and Design, 158 (1995) 363-376.
DOI: 10.1016/0029-5493(95)01043-h
Google Scholar
[30]
M. P. Luong, Fatigue limit evaluation of metals using an infrared thermographic technique, Mechanics of Materials, 28 (1998) 155-163.
DOI: 10.1016/s0167-6636(97)00047-1
Google Scholar
[31]
G. La Rosa, A. Risitano, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, International Journal of Fatigue, 22 (2000) 65-73.
DOI: 10.1016/s0142-1123(99)00088-2
Google Scholar
[32]
P. K. Liaw, H. Wang, L. Jiang, B. Yang, J. Y. Huang, R. C. Kuo, J. G. Huang, Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz, Scripta Materialia, 42 (2000) 389-395.
DOI: 10.1016/s1359-6462(99)00358-9
Google Scholar
[33]
B. Yang, P. K. Liaw, H. Wang, L. Jiang, J. Y. Huang, R. C. Kuo, J. G. Huang, Thermographic investigation of the fatigue behavior of reactor pressure vessel steels, Materials Science and Engineering: A, 314 (2001) 131-139.
DOI: 10.1016/s0921-5093(00)01910-9
Google Scholar
[34]
K. Kurashiki, M. Iwamoto, Fatigue damage evaluation of GFRP using infrared thermography-effects of matrix resin and fiber content on evaluation of fatigue damage, Journal of the Society of Materials Science, Japan, 52 (2003) 1253-1257.
DOI: 10.2472/jsms.52.1253
Google Scholar
[35]
A. Chrysochoos, Infrared thermography, a potential tool for analysing the material behaviour, Mécanique & Industries, 3 (2002) 3-14.
Google Scholar
[36]
B. Wei, S. Johnson, R. Haj-Ali, A stochastic fatigue damage method for composite materials based on markov chains and infrared thermography, International Journal of Fatigue, 32 (2010) 350-360.
DOI: 10.1016/j.ijfatigue.2009.07.010
Google Scholar