Phase Diagram of Mg-Zn-Gd System Alloy at Mg Rich Corner and its Application in the Development of Two New Alloys

Article Preview

Abstract:

The Mg-rich corner of the equilibrium phase diagram of the Mg-Zn-Gd system has been calculated in detail using the phase diagram calculation software PANDAT and the thermodynamic database for Mg alloys. The calculated phase diagram includes the liquidus projection, isothermal sections and vertical sections. It is found that an increase of Zn content in the Mg-Gd alloy reduces the phase field of α-Mg + GdMg5. Based on the calculated phase diagrams, two alloys, Mg-5.5Zn-2Gd-0.5Zr and Mg-1.6Gd-5.5Zn-0.5Zr (wt.%), denoted as ZGK620 and ZGK616, were developed and their solidification and precipitation processes were analyzed in detail. The optimized thermal mechanical processing and heat-treatment processes were defined by referring to the calculated phase diagrams of the Mg-Zn-Gd system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scripta Mater. 53 (2005) 799-803.

DOI: 10.1016/j.scriptamat.2005.06.006

Google Scholar

[2] C.L. Mendis, K. Enhanced, K. Hono, Age hardening in a Mg-2.4at.% Zn alloy by trace additions of Ag and Ca, Scripta Mater. 57 (2007) 485-488.

DOI: 10.1016/j.scriptamat.2007.05.031

Google Scholar

[3] H. Somekawa, A. Singh, T. Mukai, High fracture toughness of extruded Mg-Zn-Y alloy by the synergistic effect of grain refinement and dispersion of quasicrystalline phase, Scripta Mater. 56 (2007) 1091-1094.

DOI: 10.1016/j.scriptamat.2007.02.024

Google Scholar

[4] Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, M.X. Liang, Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy, Mat. Sci. Eng. A 454-455 (2007) 274-280.

DOI: 10.1016/j.msea.2006.11.047

Google Scholar

[5] Y.C. Guo, J.P. Li, J. Li, Z. Yang, J. Zhao, F. Xia, Minxian Liang, Mg-Gd-Y system phase diagram calculation and experimental clarification, J. Alloys Compd. 450 (2008) 446-451.

DOI: 10.1016/j.jallcom.2006.10.125

Google Scholar

[6] J.P. Li, Z. Yang, T. Liu, Y.C. Guo, F. Xia, J.M. Yang, M.X. Liang, Microstructures of extruded Mg-12Gd-1Zn-0.5Zr and Mg-12Gd-4Y-1Zn-0.5Zr alloys, Scripta Mater. 56 (2007) 137-140.

DOI: 10.1016/j.scriptamat.2006.09.008

Google Scholar

[7] N. Saunders, Phase diagram calculations for eight glass forming alloy systems, Calphad 9 (1985) 297-309.

DOI: 10.1016/0364-5916(85)90001-x

Google Scholar

[8] P.J. Spencer, A brief history of CALPHAD, Calphad 32 (2008) 1-8.

Google Scholar

[9] F. von Buch, J. Lietzau, B. L. Mordike, A. Pisch, R. Schmid-Fetzer, Development of Mg-Sc-Mn alloys, Mat. Sci. Eng. A 263 (1999) 1-7.

DOI: 10.1016/s0921-5093(98)01040-5

Google Scholar

[10] J. Gröbner, R. Schmid-Fetzer, Selection of promising quaternary candidates from Mg-Mn-(Sc, Gd, Y, Zr) for development of creep-resistant magnesium alloys, J. Alloys Compd. 320 (2001) 296-301.

DOI: 10.1016/s0925-8388(00)01480-8

Google Scholar

[11] M. Ohno, D. Mirkovic, R. Schmid-Fetzer, Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys, Mat. Sci. Eng. A421 (2006) 328-337.

DOI: 10.1016/j.msea.2006.02.006

Google Scholar