Age Hardening of Mg-3Zn-xCa (X = 0, 0.5, 1.0) wt.% Alloys

Article Preview

Abstract:

Alloys of nominal composition Mg-3Zn-xCa (x = 0, 0.5, 1.0) wt.% were prepared by resistance melting and casting under a protective argon atmosphere. All specimens were examined by hardness tests during ageing at 175 °C. It was shown that calcium addition causes the increase in hardness. A detailed characterisation of microstructure of metastable phases has been carried out using transmission electron microscopy (TEM). Calcium addition resulted in much refined and more homogeneous distribution of the precipitates when compared with the binary Mg-3%Zn alloy. The age-hardening of the ternary alloy is attributed to the fine disc-shape plates lying on the basal plane of the matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

481-485

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.J. Polmear, Light Alloys From Traditional to Nanocrystals, fourth ed., Elsevier, London 2006.

Google Scholar

[2] J.C. Oh, T. Ohkubo,.T. Mukai, K. Hono, TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy, Scripta Mater. 53 (2005) 675-679.

DOI: 10.1016/j.scriptamat.2005.05.030

Google Scholar

[3] Y. Sun, M. Kong, X. Jiao, In vitro evaluation of Mg-4.0Zn-0.2Ca alloy for biomedical application, Trans. Nonferrous Met. Soc. China, 21 (2011) 252-257.

Google Scholar

[4] S.R. Agnew, O. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloys, Int. J. Plasticity 21 (2005) 1161-1193.

DOI: 10.1016/j.ijplas.2004.05.018

Google Scholar

[5] J.F. Nie, B.C. Muddle, Precipitation hardening of Mg-Ca(-Zn) alloys, Scripta Mater. 37 (1997) 1475-1481.

DOI: 10.1016/s1359-6462(97)00294-7

Google Scholar

[6] C.J. Bettles, M.A. Gibson, K. Venkatesan, Enhanced age-hardening behavior in Mg-4 wt.% Zn micro-alloyed with Ca, Scripta Mater. 51 (2004), 193-197.

DOI: 10.1016/j.scriptamat.2004.04.020

Google Scholar

[7] K. Oh-ishi, R. Watanabe, C.L. Mendis, K. Hono, Age-hardening response of Mg-0.3 at. %Ca alloys with different Zn contents, Mat. Sci. Eng. A 526 (2009) 177-184.

DOI: 10.1016/j.msea.2009.07.027

Google Scholar

[8] J.B. Clark, Transmission electron microscopy study of age hardening in a Mg-5 wt.% Zn alloy, Acta Metall. 13 (1965) 1281-1289.

DOI: 10.1016/0001-6160(65)90039-8

Google Scholar

[9] X. Gao, J.F. Nie, Structure and thermal stability of primary intermetallic particles in a Mg-Zn casting alloy, Scripta Mater. 57 (2007) 655-658.

DOI: 10.1016/j.scriptamat.2007.06.005

Google Scholar

[10] X. Gao, J.F. Nie, Characterization of strengthening precipitate phases in a Mg-Zn alloy, Scripta Mater. 56 (2007) 645-648.

DOI: 10.1016/j.scriptamat.2007.01.006

Google Scholar

[11] M. Bamberger, G. Levi, J.B. Vander Sande, Precipitation hardening in Mg-Zn-Ca alloys, Metall. Mater. Trans. A 37 (2006) 481-487.

DOI: 10.1007/s11661-006-0019-9

Google Scholar

[12] B. Langelier, X. Wang, S. Esmaeili, Evolution of precipitation during non-isothermal ageing of an Mg-Ca-Zn alloy with high Ca content, Mat. Sci. Eng. A 538 (2012) 246-251.

DOI: 10.1016/j.msea.2012.01.038

Google Scholar

[13] G. Levi, S. Avraham, A. Zilberov, M. Bamberger, Solidification, solution treatment and age hardening of Mg-1.6 wt.% Ca-3.2 wt.% Zn alloy, Acta Mater. 54 (2006) 523-530.

DOI: 10.1016/j.actamat.2005.09.023

Google Scholar

[14] K. Kubok, L. Litynska-Dobrzynska, J. Wojewoda-Budka, A. Goral, A. Debski: submitted to Archives of Metallurgy and Materials (2012).

DOI: 10.2478/v10172-012-0193-2

Google Scholar