[1]
F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials 27 (2006) 1013-1018.
DOI: 10.1016/j.biomaterials.2005.07.037
Google Scholar
[2]
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials 26 (2005) 3557-3563.
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[3]
G.L. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci. 49 (2007) 1696-1701.
DOI: 10.1016/j.corsci.2007.01.001
Google Scholar
[4]
G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Coronary stents: A materials perspective, Biomaterials 28 (2007) 1689-1710.
DOI: 10.1016/j.biomaterials.2006.11.042
Google Scholar
[5]
C.T. Walsh, H.H. Sandstead, A.S. Prasad, P.M. Newberne, P.J. Fraker, Zinc - Health-Effects and Research Priorities for the 1990s, Environmental Health Perspectives 102 (1994) 5-46.
DOI: 10.2307/3431820
Google Scholar
[6]
Z.J. Li, X.N. Gu, S.Q. Lou, Y.F. Zheng, The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials 29 (2008 ) 1329-1344.
DOI: 10.1016/j.biomaterials.2007.12.021
Google Scholar
[7]
Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, B.S. You, The role of second phases in the corrosion behavior of Mg-5Zn alloy, Corros. Sci. 60 (2012) 238-245.
DOI: 10.1016/j.corsci.2012.03.030
Google Scholar
[8]
H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany, Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0.5Ca-xZn alloys, Corros. Sci. 64 (2012) 184-197.
DOI: 10.1016/j.corsci.2012.07.015
Google Scholar
[9]
E.L. Zhang, L. Yang, J.W. Xu, H.Y. Chen, Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application, Acta Biomaterialia 6 (2010) 1756-1762.
DOI: 10.1016/j.actbio.2009.11.024
Google Scholar
[10]
G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater. 1 (1999) 11-33.
Google Scholar
[11]
M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Influence of the beta-phase morphology on the corrosion of the Mg alloy AZ91, Corros. Sci. 50 (2008) 1939-1953.
DOI: 10.1016/j.corsci.2008.04.010
Google Scholar
[12]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[13]
D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand, Grain refinement of magnesium alloys, Metall. Mater. Trans. A 36 (2005) 1669-1679.
DOI: 10.1007/s11661-005-0030-6
Google Scholar
[14]
Y.C. Lee, A.K. Dahle, D.H. StJohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. A 31 (2000) 2895-2906.
DOI: 10.1007/bf02830349
Google Scholar
[15]
H.R.B. Rad, M.H. Idris, M.R.A. Kadir, S. Farahany, Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys, Mater. Design 33 (2012) 88-97.
DOI: 10.1016/j.matdes.2011.06.057
Google Scholar
[16]
H.S. Brar, J. Wong, M.V. Manuel, Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials, J. Mech. Behav. Biomed. Mater. 7 (2012) 87-95.
DOI: 10.1016/j.jmbbm.2011.07.018
Google Scholar