[1]
J. Zhang, Z. Fan, Y. Q. Wang, B.L. Zhou, Microstructural development of Al-15wt.%Mg2Si in situ composite with mischmetal addition, Mater. Sci. Eng. A 281 (2000) 104-112.
DOI: 10.1016/s0921-5093(99)00732-7
Google Scholar
[2]
J. Zhang, Z. Fan, Y. Wang, B. Zhou, Microstructural refinement in Al-Mg2Si in situ composites, J. Mater. Sci. Letts. 18 (1999) 783-784.
Google Scholar
[3]
Q.D. Qin, Y.G. Zhao, W. Zhou, P.J. Cong, Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite, Mat. Sci. Eng. A 447 (2007) 186-191.
DOI: 10.1016/j.msea.2006.10.076
Google Scholar
[4]
M.F. Ourfali, I. Todd, H. Jones, Effect of solidification cooling rate on the morphology and number per unit volume of primary Mg2Si particles in a hypereutectic Al-Mg-Si alloy, Metall. Mater. Trans. A 36 (2005) 1368-1372.
DOI: 10.1007/s11661-005-0228-7
Google Scholar
[5]
J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al-Mg2Si alloys, J. Mater. Sci. Letts. 19 (2000) 1825-1828.
Google Scholar
[6]
Z. Fan, M.J. Bevis, S. Ji, PCT Patent WO 01/21343 A1 (1999).
Google Scholar
[7]
S. Ji, Z. Fan, M.J. Bevis, Semi-solid processing of engineering alloys by a twin-screw rheomoulding process, Mat. Sci. Eng. A 299 (2001) 210-217.
DOI: 10.1016/s0921-5093(00)01373-3
Google Scholar
[8]
Z. Fan, Y.B. Zuo, B. Jiang, A new technology for treating liquid metals with intensive melt shearing, Mater. Sci. Forum 690 (2011) 141-144.
DOI: 10.4028/www.scientific.net/msf.690.141
Google Scholar
[9]
Z. Fan, Y. Wang, M. Xia, S. Arumuganathar, Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing, Acta Mater. 57 (2009) 4891-4901.
DOI: 10.1016/j.actamat.2009.06.052
Google Scholar
[10]
H. Men, B. Jiang, Z. Fan, Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt, Acta Mater. 58 (2010) 6526-6534.
DOI: 10.1016/j.actamat.2010.08.016
Google Scholar
[11]
H.T. Li, Y. Wang, Z. Fan, Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al-Mg alloys, Acta Mater. 60 (2012) 1528-1537.
DOI: 10.1016/j.actamat.2011.11.044
Google Scholar
[12]
Y. Wang, H.T. Li, Z. Fan, Oxidation of aluminium alloy melts and inoculation by oxide particles, Trans. Indian. Inst. Met. 65 (2012) 653-661.
DOI: 10.1007/s12666-012-0194-x
Google Scholar
[13]
J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Equilibrium pseudobinary Al-Mg2Si phase diagram, Mater. Sci. Technol. 17 (2000) 494-496.
Google Scholar
[14]
TP-1, Standard Test Procedure for Aluminum Alloy Grain Refiners, The Aluminium Association, Washington, DC, 1987.
Google Scholar
[15]
Q.D. Qin, Y.G. Zhao, Nonfacetted growth of intermetallic Mg2Si in Al melt during rapid solidification, J. Alloys Compd. 462 (2008) 28-31.
DOI: 10.1016/j.jallcom.2007.08.037
Google Scholar
[16]
S. Li, S. Zhao, M. Pan, D. Zhao, X. Chen, O.M. Barabash, R.I. Barabash, Solidification and structural characteristics of Al-Mg2Si eutectic, Mater. Trans. JIM 38 (1997) 553-559.
DOI: 10.2320/matertrans1989.38.553
Google Scholar
[17]
Z. Zhang, H.T. Li, I.C. Stone, Z. Fan, Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing, IOP Conf. Series: Materials Science and Engineering 27 (2011) 012042.
DOI: 10.1088/1757-899X/27/1/012042
Google Scholar
[18]
H. Choi, H. Konishi, X. Li, Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al-20Si alloy, Mat. Sci. Eng. A 541 (2012) 159-165.
DOI: 10.1016/j.msea.2012.01.131
Google Scholar