High-Resolution Strain Mapping Through Time-of-Flight Neutron Transmission Diffraction

Article Preview

Abstract:

The spatial resolution of time of flight neutron transmission diffraction was recently improved by the extension of photon/electron counting technology to imaging of thermal and cold neutrons. The development of novel neutron sensitive microchannel plates enables neutron counting with spatial resolution of ~55 um and time-of-flight accuracy of ~1 us, with efficiency as high as 70% for cold and ~40% for thermal neutrons. The combination of such a high resolution detector with a pulsed collimated neuron beam provides the opportunity to obtain a 2-dimensional map of neutron transmission spectra in one measurement. The results of our neuron transmission measurements demonstrate that maps of strains integrated along the beam propagation direction can be obtained with ~100 microstrain accuracy and spatial resolution of ~100 um providing there are sufficient neutron events collected. In this paper we describe the capabilities of the MCP neutron counting detectors and present the experimental results of 2-dimensional strain maps within austenitic steel compact tension (CT) crack samples measured at the ENGIN-X beamline of the ISIS pulsed neutron source.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Balzar, N. C. Popa, S. Vogel, Strain and stress tensors of rolled uranium plate by Rietveld refinement of TOF neutron-diffraction data, Mat. Sci. Eng. A-Struct. Materials Prop. Microstructure and Processing 528 (2010) 122-126.

DOI: 10.1016/j.msea.2010.06.002

Google Scholar

[2] J. R. Santisteban, L. Edwards, A. Steuwer, P. J. Withers, Time-of-flight neutron transmission diffraction, J. Appl. Cryst. 34 (2001) 289-297.

DOI: 10.1107/s0021889801003260

Google Scholar

[3] A. Steuwer, P.J. Withers, J.R. Santisteban, L. Edwards, G. Bruno, M.E. Fitzpatrick, M.R. Daymond, M.W. Johnson, D. Wang, Bragg Edge Determination for Accurate Lattice Parameter and Elastic Strain Measurement, Phys. Stat. Sol. (a) 185 (2001).

DOI: 10.1002/1521-396x(200106)185:2<221::aid-pssa221>3.0.co;2-c

Google Scholar

[4] A. Steuwer, J. R. Santisteban, P. J. Withers, L. Edwards, M. E. Fitzpatrick, In situ determination of stresses from time-of-flight neutron transmission spectra, J. Appl. Cryst. 36 (2003) 1159-1168.

DOI: 10.1107/s0021889803013748

Google Scholar

[5] J. R. Santisteban, M. R. Daymond, J. A. James and L. Edwards, ENGIN-X: a third-generation neutron strain scanner, J. Appl. Cryst. 39 (2006) 812-825.

DOI: 10.1107/s0021889806042245

Google Scholar

[6] A. S. Tremsin, J. B. McPhate, W. Kockelmann, J. V. Vallerga, O. H. W. Siegmund, W. B. Feller, High resolution Bragg edge transmission spectroscopy at pulsed neutron sources: proof of principle experiments with neutron counting MCP detector", Nucl. Instr. Meth. A 633 (2011).

DOI: 10.1016/j.nima.2010.06.176

Google Scholar

[7] A.S. Tremsin, W.B. Feller, R.G. Downing, Efficiency optimization of neutron imaging detectors with 10-B doped MCPs, Nucl. Instrum. Meth. A 539 (2005) 278-311.

Google Scholar

[8] A. S. Tremsin, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, W. B. Feller, E. Lehmann, Improved efficiency of high resolution thermal and cold neutron imaging, Nucl. Instr. Meth. A 628 (2011) 415-418.

DOI: 10.1016/j.nima.2010.07.014

Google Scholar

[9] A. S. Tremsin, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, W. B. Feller, H. Z. Bilheux, J. J. Molaison, C. A. Tulk, L. Crow, R. G. Cooper, D. Penumadu, Transmission Bragg edge spectroscopy measurements at ORNL Spallation Neutron Source, Journal of Physics: Conference Series 251 (2010).

DOI: 10.1088/1742-6596/251/1/012069

Google Scholar

[10] A. S. Tremsin, J. B. McPhate, A. Steuwer, W. Kockelmann, A. M Paradowska, J. F. Kelleher, J. V. Vallerga, O. H. W. Siegmund, W. B. Feller, High-resolution strain mapping through time-of-flight neutron transmission diffraction with an MCP neutron counting detector, Strain (2011).

DOI: 10.1111/j.1475-1305.2011.00823.x

Google Scholar

[11] F. Kropff, J.R. Granada, R.E. Mayer, The Bragg lineshapes in time-of-flight neutron powder spectroscopy, Nucl. Instr. Meth. 198 (1982) 515-521.

DOI: 10.1016/0167-5087(82)90293-9

Google Scholar

[12] T. Holy, J. Jakubek, S. Pospisil, J. Uher, D. Vavrik, Z. Vykydal, Data acquisition and processing software package for Medipix2, Nucl. Instr. Meth. A 563 (2006) 254-258.

DOI: 10.1016/j.nima.2006.01.122

Google Scholar