Extrusion Printed Graphene/Polycaprolactone/Composites for Tissue Engineering

Article Preview

Abstract:

In this work fibres and complex three-dimensional scaffolds of a covalently linked graphene-polycaprolactone composite were successfully extruded and printed using a melt extrusion printing system. Fibres with varying diameters and morphologies, as well as complex scaffolds were fabricated using an additive fabrication approach and were characterized. It was found that the addition of graphene improves the mechanical properties of the fibres by over 50% and in vitro cytotoxicity tests showed good biocompatibility indicating a promising material for tissue engineering applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

496-502

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. I. Sabir, X. X. Xu, L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications, J. Mater. Sci. 44 (2009) 5713-5724.

DOI: 10.1007/s10853-009-3770-7

Google Scholar

[2] J. T. Yeh, M. C. Yang, C. J. Wu, C. S. Wu, Preparation and Characterization of Biodegradable Polycaprolactone/Multiwalled Carbon Nanotubes Nanocomposites, J. Appl. Polym. Sci. 112 (2009) 660-668.

DOI: 10.1002/app.29485

Google Scholar

[3] I. Janigova, F. Lednicky, D. J. Moskova, I. Chodak, Nanocomposites with Biodegradable Polycaprolactone Matrix, Macromol Symp 301 (2011) 1-8.

Google Scholar

[4] M. Diba, M. H. Fathi, M. Kharaziha, Novel forsterite/polycaprolactone nanocomposite scaffold for tissue engineering applications, Mater. Lett. 65 (2011) 1931-1934.

DOI: 10.1016/j.matlet.2011.03.047

Google Scholar

[5] K. Saeed, S. Y. Park, H. J. Lee, J. B. Baek, W. S. Huh, Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite, Polymer 47 (2006) 8019-8025.

DOI: 10.1016/j.polymer.2006.09.012

Google Scholar

[6] S. Sayyar, E. Murray, B.C. Thompson, S. Gambhir, D.L. Officer and G.G. Wallace, Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering, Carbon 52 (2013) 296-304.

DOI: 10.1016/j.carbon.2012.09.031

Google Scholar

[7] F. Hussain, M. Hojjati, M. Okamoto, R. E. Gorga, Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater. 40 (2006) 1511-1575.

DOI: 10.1177/0021998306067321

Google Scholar

[8] S. Y. Park, J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, S. Hong, Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene, Adv. Mater. 23 (2011)

DOI: 10.1002/adma.201101503

Google Scholar

[9] A. K. Geim, A. H. MacDonald, Graphene: Exploring carbon flatland, Phys. Today 60 (2007) 35-41.

Google Scholar

[10] Y. Si, E. T. Samulski, Synthesis of water soluble graphene, Nano Lett. 8 (2008) 1679-1682.

DOI: 10.1021/nl080604h

Google Scholar

[11] B. Das, K. E. Prasad, U. Ramamurty, C. N. R. Rao, Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene, Nanotechnology 20 (2009) 125705.

DOI: 10.1088/0957-4484/20/12/125705

Google Scholar

[12] H. L. Fan, L. L. Wang, K. K. Zhao, N. Li, Z. J. Shi, Z. G. Ge, Z. X. Jin, Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites, Biomacromolecules 11 (2010) 2345-2351.

DOI: 10.1021/bm100470q

Google Scholar

[13] S. C. M. Fernandes, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, L. A. Berglund, L. Salmen, Transparent chitosan films reinforced with a high content of nanofibrillated cellulose, Carbohydr. Polym. 81 (2010) 394-401.

DOI: 10.1016/j.carbpol.2010.02.037

Google Scholar

[14] I. H. Kim, Y. G. Jeong, Polylactide/Exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity, J Polym Sci Pol Phys 48 (2010) 850-858.

DOI: 10.1002/polb.21956

Google Scholar

[15] X. M. Yang, L. A. Li, S. M. Shang, X. M. Tao, Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites, Polymer 51 (2010) 3431-3435.

DOI: 10.1016/j.polymer.2010.05.034

Google Scholar

[16] E. Murray, S. Sayyar, et al. Simultaneous reduction and polymer stabilisation of graphene oxide nanosheets under microwave irradiation. Manuscript under preparation

Google Scholar

[17] E. Sachlos, J. T. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds, Eur Cell Mater 5 (2003) 29-39.

DOI: 10.22203/ecm.v005a03

Google Scholar

[18] S. Park, G. Kim, Y.C. Jeon, Y. Koh and W. Kim, 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system, J Mater Sci-Mater M. 20 (2009) 229-34.

DOI: 10.1007/s10856-008-3573-4

Google Scholar

[19] J.-H. Lee, S.-A. Park, K. Park, J.-H. Kim, K.-S. Kim, J. Lee and W. Kim, Fabrication and characterization of 3D scaffold using 3D plotting system, Chinese Sci. Bull. 55 (2010) 94-98.

DOI: 10.1007/s11434-009-0271-7

Google Scholar

[20] S. Gambhir, E. Murray, et. al. Extensive chemical reduction and dispersion of graphene nanosheets. Manuscript under preparation.

Google Scholar