Evaluation of the Thermal and Kinetic Behavior of the SS Obtained from the Combined Treatment of Liquid Leachate with Domestic Sewage in UASB Reactor

Article Preview

Abstract:

The present study reports the results obtained from Sewage Sludge SS for the obtainment of bio-oil through the pyrolysis process. The research aimed to evaluate the thermal and kinetic behavior of the bio-solid. In this work studies were made on physicochemical, elemental analysis (CHNO). Thermogravimetry (TG) with heating rate of 10o C min-1 over two atmospheres (synthetic air and N2), Thermodynamics (ΔH, ΔS e ΔG), kinetic and spectroscopic. The thermalgravimetric study stated a thermal stability at 30°C. The kinetic calculations were made aiming to observe parameters such as: Activation energy (Ae), frequency factor (s-1), standard deviation (sd) and linear coefficient (r), which were calculated by Thermogravimetry by the methods of Coats-Redfern (CR); Madhusudanan (MD); Van Krevelen (VK); Horowitz-Metzger (HM). In the spectrometry in the infrared (IR) region it was observed bands referring to the presence of water, organic material and silicon oxides in the SS samples analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 775-776)

Pages:

162-167

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.F. Dantas Filho: Tratamento biológico conjugado de lixiviado e esgoto doméstico em reator UASB. Mestrado (Dissertação). Campina Grande, 2003. Universidade Federal de Campina Grande (UFCG). (PB).

DOI: 10.24873/j.rpemd.2021.10.846

Google Scholar

[2] A.M.G. Oliveira, M. Aquino and M. Castro Neto. Compostagem caseira de lixo orgânico doméstico. (Embrapa Mandioca e Fruticultura Cruz das Almas, 2005).

Google Scholar

[3] USEPA – United States Environmental Protection Agency. A guide to the biosolids risk assessments for the EPA Part 503 rule, 1995. Washington: Office of Wastewater Management, EPA/832-B-93-005, 1995. Mimeografado.

Google Scholar

[4] J. Werther Ogada: T. Prog. Energ. Combust. Sci. Vol. 25 (1999), p.55.

Google Scholar

[5] C.G. Mothé, A. D. Azevedo. Análise térmica de materiais. São Paulo: Editora, (2002).

Google Scholar

[6] A.G. Souza, J.C.O. Santos, M.M. Conceição, M.C.D. Silva and S.A. Prasad: Brazilian Journal of Chemical Engineering Vol. 21 (2) (2004), p.265.

Google Scholar

[7] A. Alpha: WPFC – Standard Methods for the Examination of Water and Wastwater. (18 ed. Washington, 1992).

Google Scholar

[8] C.G. Mothé and A. Azevedo. Análise térmica de materiais. (Editora São Paulo, 2010).

Google Scholar

[9] A.W. Coats and P. Redfern: Nature (1964).

Google Scholar

[10] M.A. Gabal. Thermochim. Acta Vol. 402 (2003), p.199.

Google Scholar

[11] A.G. Souza, J.C. O Santos, M.M. Conceição, M.C.D. Silva and S. A Prasad: Brazilian Journal of Chemical Engineering Vol. 21 (2) (2004), p.265.

Google Scholar

[12] W.S.S. Lopes: Síntese, caracterização e cinética de decomposição térmica de complexos de lantanídeos. Doutorado (Tese). João Pessoa, 2005. Universidade Federal da Paraíba (UFPB). (PB).

DOI: 10.46420/9786599120824

Google Scholar

[13] M.K.M. Nair and P.K. Radhakhishnaw: Thermochimica Acta (1997), p.115.

Google Scholar

[14] L. Shen, L. Zahang: Fuel Vol. 82 (2003), p.465.

Google Scholar