Infra-Red Spectroscopy Analysis of Malva Fibers

Article Preview

Abstract:

The growing interest for natural materials as an environmentally friendly alternative for the substitution of energy intensive and non-sustainable synthetic materials, has motivated the use of lignocellulosic fibers as reinforcement of polymer composites. The malva fiber, a relatively unknown lignocellulosic fiber with potential for composite reinforcement, still needs to be characterized for possible engineer applications. Therefore, the present work analyzed the malva fiber by means of Fourier Transform Infra-red (FTIR) spectroscopy. The malva fiber FTIR spectrum revealed main absorption bands typical of any lignocellulosic fiber. However, some specific bands as well as bands broadening and intensity suggested particular activities for functional molecular groups in the malva fiber.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 775-776)

Pages:

255-260

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Bledzki and J. Gassan: Prog. Polym. Sci. Vol. 4 (1999), p.221.

Google Scholar

[2] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mat. Eng. Vol. 276/277 (2000), p.1.

Google Scholar

[3] D. Nabi Sahed and J.P. Jog: Adv Polym Technol Vol. 18(4) (1999), p.351.

Google Scholar

[4] S. J Eichhorn, C. A Baillie, N. Zafeiropoulos, L.Y. Mwaikambo, M.P. Ansell and A. Dufresne: J. Mat. Sci, Vol. 36 (2001), p.2107.

Google Scholar

[5] A. K Mohanty, M. Misra and L.T. Drzal: J. Polym. Environ. Vol. 10, (2002), p.19.

Google Scholar

[6] A. N Netravali and S. Chabba: Mater. Today Vol. 6 (2003), p.22.

Google Scholar

[7] J. Crocker: Mater. Technol. Vol. 2-3 (2008), p.174.

Google Scholar

[8] M.J. John and S. Thomas: Carbohydr. Polym. Vol. 71 (2008), p.343.

Google Scholar

[9] S. N Monteiro, F.P. D Lopes, A. S Ferreira and D.C. O Nascimento: JOM Vol. 61 (2009), p.17.

Google Scholar

[10] S.N. Monteiro, F.P. D Lopes, A. P Barbosa, A. B Bevitori, I.L. A Silva and L. L Costa: Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[11] S. Kalia, B. S Kaith and I. Kaurs (eds. ): Cellulose Fibers: Bio- and Nano-Polymer Composites. (New York: Springer, 2011).

Google Scholar

[12] P. Wambua, I. Ivens and I. Verpoest: Compos. Sci. Technol. Vol. 63 (2003), p.1259.

Google Scholar

[13] S.V. Joshi, L.T. Drzal, A.K. Mohanty and S. Arora: Compos. Part A Vol. 35 (2004), p.3716.

Google Scholar

[14] G. Marsh: Mater. Today Vol. 6 (2003), p.36.

Google Scholar

[15] J. Holbery and D. Houston: JOM Vol. 58 (2006), p.80.

Google Scholar

[16] R. Zah, R. Hischier, A.L. Leão and I. Brown: J. Clean Prod. Vol. 15 (2007), p.1032.

Google Scholar

[17] K.G. Satyanarayana, J.L. Guimarães and F. Wypych: Compos. Part A Vol. 38 (2007), p.1694.

Google Scholar

[18] D. Fengel and G. Wegener: Wood - Chemistry, ultrastructure, reactions. (Berlin Germany, pub: Walter de Gruyter, 1989).

Google Scholar

[19] O. Faix: Holzforscung Vol. 45 (1991), p.21.

Google Scholar

[20] M.A. Khan, K.M. Idriss Ali and S.C. Basm: J. Appl. Polym. Sci. Vol. 49 (1993), p.1547.

Google Scholar

[21] M.M. Ibrahim, A. Dusfrene, W. K . El-Zawawy and F.A. Agblevor: Carbohydrate Polym. Vol. 81 (2010), p.811.

Google Scholar

[22] M. Shibata, K. Ogawa, N. Teramoto, R. Yosomiya and H. Takeishi: Macromol. Mater. Eng. Vol. 288 (2003), p.35.

Google Scholar

[23] D. Ray and B.K. Sarkar: J. Appl. Polym. Sci. Vol. 80 (2001), p.1013.

Google Scholar

[24] F. Tomcshak, K.G. Satyanarayana and T.H.D. Sidenstricker: Composites Part A Vol. 38 (2007), p.2227.

Google Scholar