Structural, Morphological, Vibrational and Electrical Studies on Zn Doped Nanocrystalline LiNiPO4

Article Preview

Abstract:

Olivine structured LiNi1-xZnxPO4 (x=0, 0.05, 0.10, 0.15, 0.20) have been prepared by a polyol method using 1, 2 propanediol as a polyol medium. The XRD results of pure and Zn doped LiNiPO4 sample authenticate the orthorhombic crystal structure with high crystalline nature. The crystallite size is calculated from the Debye Scherer formula and it is found in the range of 55-65nm and 49-55nm for undoped and doped samples respectively. The thermal properties of LiNi1-xZnxPO4 were investigated by thermo gravimetric analysis (TG) and differential thermal analysis. Laser Raman studies confirm that the dopant is entered in to the LiNiPO4 lattice. Morphology of the samples is analyzed through SEM analysis. The higher electrical conductivity is calculated for LiNi0.85Zn0.15PO4 sample compared with other concentrations of dopant and it is found to be 1.08×10-7 S cm-1 at ambient temperature. Dielectric and Modulus studies are also discussed through impedance spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-153

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lucangelo Dimesso, Chirstina Spanheimer, Wolfram Jaegermann, Investigations on graphitic carbon foams-LiNiyPO4 (y=0.8-0.1) composites, Solid State Sciences 14 (2012) 1372-1377.

DOI: 10.1016/j.solidstatesciences.2012.07.023

Google Scholar

[2] K.Ressouli, K.benkhouja, J.R. Ramos-Barrado, C.Julien, Electrical conductivity in lithium orthophosphates, Mater. Sci and Eng. B, 98( 2003), 185.

DOI: 10.1016/s0921-5107(02)00574-3

Google Scholar

[3] J.Wolfenstine, J.Allen, Ni3+/Ni2+ redox potential in LiNiPO4, J.Power Sources, 142(2005), 389.

DOI: 10.1016/j.jpowsour.2004.11.024

Google Scholar

[4] J.Wolfenstine, U.Lee, B.Poese, J.L. Allen, Effect of oxygen partial pressure on the discharge capacity of LiCoPO4, J.Power Sources, 144(2005), 226

DOI: 10.1016/j.jpowsour.2004.12.013

Google Scholar

[5] J. Wolfenstine, J. Read, J. L. Allen, Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4, Journal of Power sources, 163 (2007) 1070-1073.

DOI: 10.1016/j.jpowsour.2006.10.010

Google Scholar

[6] R. Yang, X. P. Song, M.S. Zhao, F. Wang, Characteristics of Li0.98Cu0.01FePO4 prepared from improved co-precipitation, J. Alloys cmpds 468 (2009) 365-369.

DOI: 10.1016/j.jallcom.2008.01.072

Google Scholar

[7] J. F. Ni, M. Morishita, Y. Kawabe, M. Watada, N. Takeichi, Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid, J.Power Sources 195 (2010) 2877-2882.

DOI: 10.1016/j.jpowsour.2009.11.017

Google Scholar

[8] J.F.Ni, H.H. Zhou, J. T. Chen, X.X. Zhang, LiFePO4 doped with ions prepared by co-precipitation method, Mater.Lett. 59 (2005) 2361.

DOI: 10.1016/j.matlet.2005.02.080

Google Scholar

[9] S.Karthickprabhu, G.Hirankumar, A. Maheswaran, C. Sanjeeviraja, R. S. Daries Bella , Structural and conductivity studies on LiNiPO4 prepared by polyol method, J.Alloys Cmpds, 548 (2013) 65-69.

DOI: 10.1016/j.jallcom.2012.08.141

Google Scholar

[10] H. Liu, Q. cao, L. J. Fu, C. Li, Y. P. Wu and H. Q. Wu, Doping effects of Zinc on LiFePO4 cathode material for lithium ion batteries, Electrochem. Commun. 8 (2006) 1553-1557.

DOI: 10.1016/j.elecom.2006.07.014

Google Scholar

[11] Sathiyaraj Kandhasamy, Kalaiselvi Nallathamby, Manickam Minakshi, Role of Structural defects in olivine cathodes, progress in Solid State Chemistry 40 (2012) 1-5.

DOI: 10.1016/j.progsolidstchem.2012.01.001

Google Scholar

[12] C.M. Julien, A. Mauger, K. Zaghib, R. Vellette and H. Groult, Structural and electronic properties of the LiNiPO4 orthophosphate, Ionics, 18 (2012) 625-633.

DOI: 10.1007/s11581-012-0671-6

Google Scholar

[13] A. Rajalakshmi, V.D. Nithya, K.Karthikeyan, C. Sanjeeviraja, Y.S. Lee, R.Kalai Selvan, Physicochemical properties of V5+ doped LiCoPO4 as cathode materials for Li-ion batteries, J Sol-Gel Sci Technol, Doi.10.1007/s 10971-012-2952-y.

DOI: 10.1007/s10971-012-2952-y

Google Scholar

[14] Alo Dutta, T. P. Sinha, Dielectric relaxation and conduction mechanism in LaNi3/4Mn1/4O3 (M=Mo, W), J. Alloys Compd, 509 (2011) 1705-1710.

DOI: 10.1016/j.jallcom.2010.10.012

Google Scholar

[15] J.R. Macdonald (Ed.), Impedance Spectroscopy, Wiley, Newyork, 1987.

Google Scholar

[16] Ashok Kumar Baral, V. Sankaranarayanan, Ion transport and dielectric relaxation studies in nanocrystalline Ce0.8Ho0.2O2-δ material, Physica B, 404 (2009) 1678.

DOI: 10.1016/j.physb.2009.02.002

Google Scholar

[17] Dev K. Mahato, Alo Dutta, T. P. Sinha, Dielectric relaxation and ac conductivity of double pervskite oxide Ho2ZnZrO6, Physica B, 406 (2011) 2703-2708.

DOI: 10.1016/j.physb.2011.04.012

Google Scholar

[18] S.B. Aziz, Z. H. Z. Abidin, A. K. Arof, Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane, eXPRESS Polymer Letters, 4 (2010) 300-310.

DOI: 10.3144/expresspolymlett.2010.38

Google Scholar

[19] R. Baskaran, S. Selvasekarapandian, G. Hirankumar, M.S. Bhuvaneswari, Dielectric and conductivity relaxation in PVAc based polymer electrolytes, Ionics 10 (2004) 129-134.

DOI: 10.1007/bf02410321

Google Scholar