Design and Development of Ferrite Composite Film Electrode for Photoelectrochemical Energy Application

Article Preview

Abstract:

Development of efficient photoanodes for water splitting under solar light is desirable to surmount the possible fuel crisis in future. Ferrite systems, with their excellent visible light absorption capability, stability, non-toxicity, cost-effectiveness and abundance, are being preferred to titanates, niobates and sulfides. The present work briefly reviews the modified form of ferrites. Additionally, ZnFe2O4 an n-type semiconductor with the low band gap (~1.9eV) has been considered as special case of visible light PEC application. The work further emphasizes on the utilization of solution processed techniques to develop the ferrite photoanodes. The tuning of photoanode properties by virtue of electrode fabrication parameters say deposition parameters viz., precursor concentration, pH, stoichiometry has been reviewed and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-61

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.Li, W.Luo, M.Zhang, J.Feng, Z.Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook, Energy Environ. Science, 6 (2013) 347-370.

DOI: 10.1039/c2ee22618a

Google Scholar

[2] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[3] H. G. Kim, P. H. Borse, W. Choi, J. S. Lee, Photocatalytic nano-diodes for visible light photocatalysis, Angew. Chem. Int. Ed. 44 (2005) 4585-4589.

DOI: 10.1002/anie.200500064

Google Scholar

[4] J. S. Jang, D. W. Hwang, J. S. Lee, CdS-AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light, Catal. Today 120 (2007) 174-181.

DOI: 10.1016/j.cattod.2006.07.052

Google Scholar

[5] J. S. Jang, H. G. Kim, S. M. Ji, S. W. Bae, J. H. Jung, B. H. Shon , J.S. Lee, Formation of crystalline TiO2-xNx and its photocatalytic activity, J. Solid State Chem., 179 (2006) 1067-1075.

DOI: 10.1016/j.jssc.2006.01.004

Google Scholar

[6] X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor based photocatalytic hydrogen generation, Chem. Rev., 110(2010) 6503–6570.

DOI: 10.1021/cr1001645

Google Scholar

[7] Lionel Vayssieres, On solar hydrogen nanotechnology, John Wiley & Sons (Asia) Pvt. Ltd, Singapore 2009.

Google Scholar

[8] M. G. Walter, E. L. Warren, J. R. McKone, S.W. Boettcher, Q. Mi, E. A. Santori, N. S.Lewis, Solar water splitting cells, Chem. Rev., 110 (2010) 6446–6473.

DOI: 10.1021/cr1002326

Google Scholar

[9] Krishnan Rajeshwar, Robert McConnell, and Stuart Licht, "Solar hydrogen generation, toward a renewable energy future" Springer Science, New York, 2008.

Google Scholar

[10] P. V. Kamat, K. Tvrdy, D. R. Baker, J. G. Radich, Beyond photovoltaics-semiconductor nanoarchitechture for liquid junction solar cells, Chem. Rev., 110 (2010) 6664–6688

DOI: 10.1021/cr100243p

Google Scholar

[11] A. Kubacka, M. F. Garcı´a and G. Colon, Advanced nanostructures for solar photocatalytic applications, Chem. Rev., 112 ( 2012),1555–1614.

Google Scholar

[12] Z. Liu and M. Miyauchi, Visible light induced super hydrophilicity on a WO3/ITO/CaFe2O4 heterojunction thin film, Chem. Commun., (2009), 2002–2004.

DOI: 10.1039/b819312f

Google Scholar

[13] Z. Zhang, H. Wenckstern, M. Schmidt and M. Grundmann, Wavelength selective metal- semiconductor – metal photodetectors based (Mg,Zn) O - heterostructures, Appl.Phys.Lett., 99, (2011), 083502_1–3.

DOI: 10.1063/1.3628338

Google Scholar

[14] K. Sivula, F. L. Formal and M. Gratzel, WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach Chem. Mater.,21( 2009) 2862–2867.

DOI: 10.1021/cm900565a

Google Scholar

[15] H. G. Kim, P. H. Borse, J. S. Jang, O. Jung, Y. J. Suh, J. S. Lee, Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis, Chem. Comm. (2009) 5889-5891.

DOI: 10.1039/b911805e

Google Scholar

[16] J. S. Jang, H. G. Kim, P. H. Borse and J. S. Lee, Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 photocatalysts under visible light irradiation, Int. J.Hydrogen Energy, 2007, 32, 4786–4791.

DOI: 10.1016/j.ijhydene.2007.06.026

Google Scholar

[17] H. G. Kim, P. H. Borse, W. Choi, J. S. Lee, Photocatalytic nano-diodes for visible light photo catalysis, Angew. Chem. Int. Ed. 44 (2005) 4585-4589.

DOI: 10.1002/anie.200500064

Google Scholar

[18] S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu and Y. Chen, Preparation, characteristics and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation, J.Hazard. Mater., 172, (2009) 1415–1423.

DOI: 10.1016/j.jhazmat.2009.08.007

Google Scholar

[19] S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3, Appl. Energy, 2010, 87, 2230–2236.

DOI: 10.1016/j.apenergy.2009.12.016

Google Scholar

[20] L. V. Hongjin, L. Ma, P. Zeng, D. Ke and T. Peng, Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photo catalytic hydrogen production under visible light, J. Mater. Chem., 2010, 20, 3665–3672.

DOI: 10.1039/b919897k

Google Scholar

[21] J.Papp, S. Soled, K. Dwight, A.Wold, Surface acidity and photocatalytic activity of TiO2, WO3/TiO2 and MoO3/TiO2 photocatalysts, Chem. Mater., 6,4 (1994)496-500.

DOI: 10.1021/cm00040a026

Google Scholar

[22] J.S. Jang, W. Li, S.H. OhJ.S. Lee, Fabrication of CdS/TiO2 nano bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light, Chem. Phys. Lett. 425,4-6( 2006) 278-282.

DOI: 10.1016/j.cplett.2006.05.031

Google Scholar

[23] Y.Zhang, L. Ma, J. Li, Y. Yu, Insitu fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation, Environ. Sci. Technol., 41,( 2007)6264-6269.

DOI: 10.1021/es070345i.s001

Google Scholar

[24] A.D. Paola, L. Palmisano, A.M. Venezia, V. Augugliaro, Coupled semiconductor systems for photocatalysis-preparation and characterization of polycrystalline mixed WO3/WS2 powders, J.Phys. Chem. B, 103, (1999) 8236-8244.

DOI: 10.1021/jp9911797

Google Scholar

[25] A.D. Paola, L. Palmisano, V. Augugliaro, Photocatalytic behavior of mixed WO3/WS2 powders, Catal. Today,58, (2000)141-149.

DOI: 10.1016/s0920-5861(00)00249-2

Google Scholar

[26] M.Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degradation of phenol over CO3O4/BiVO4 composite under visible light irradiation, J. Phys. Chem. B, 110,( 2006) 2021120116.

DOI: 10.1021/jp063441z

Google Scholar

[27] H. Huang, X. Lin, J. Xing, W. Wang, Z. Shan, F. Huang, Photocatalytic behavior of mixed WO3/WS2 powders, Mater. Sci. Eng., B, 141,( 2007) 49-54.

Google Scholar

[28] X.Lin, F. Huang, J. Xing, W.Wang, F. Xu, Heterojunction semiconductor SnO2/SrNb2O6 with an enhanced photocatalytic activity: The significance of chemically bonded interface, Acta Mater. 56, (2008,)2699-2705.

DOI: 10.1016/j.actamat.2008.02.013

Google Scholar

[29] X.Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic activities of heterojunction semiconductor Bi2O3/BaTiO3-A strategy for the design of efficient combined photocatalysts, J. Phys.Chem. C, 111, (2007)18288-18293.

DOI: 10.1021/jp073955d

Google Scholar

[30] H.Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, AA solid-state Z-Scheme in CdS-Au-TiO2 three component nanojunction system, Nat. Mater. 5,( 2006, ) 782-786.

DOI: 10.1038/nmat1734

Google Scholar

[31] H.G. Kim, E.D. Jeong, P.H. Borse, S. Jeong, K. Yong, J.S. Lee, W.Li, S.H. Oh, Photocatalytic ohmic layered nanocomposite for efficient utilization of visible light photons, Appl. Phys. Lett., 89, (2006)064103.

DOI: 10.1063/1.2266237

Google Scholar

[32] R.Dom, P.H. Borse, Photocatalytic and photoelectron-chemical study of ferrites for water splitting applications: a comparative study, Mat. Sci. Forum, 734 (2013) 334-348, Transtech publications.

DOI: 10.4028/www.scientific.net/msf.734.334

Google Scholar

[33] R.Dom, H.G. Kim, P.H. Borse, Investigation of solar photoelectrochemical hydrogen generation ability of ferrites for energy production –Mat. Sci. Forum, 764, (2013) 97-115, Transtech publications.

DOI: 10.4028/www.scientific.net/msf.764.97

Google Scholar

[34] E. Casbeer, V.K. Sharma ,and X-Z Li, Synthesis and photocatalytic activity of ferrites under visible light – a review, Separation and Purification Technology, 87 (2012) 1-14.

DOI: 10.1016/j.seppur.2011.11.034

Google Scholar

[35] R. Dom, R. Subasri, K. Radha, P. H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg)photocatalyst by microwave irradiation Sol. State. Commun., 151(2011) 470–473.

DOI: 10.1016/j.ssc.2010.12.034

Google Scholar

[36] P.H. Borse, J.S. Jang, S.J. Hong, J.S. Lee, J.H. Jung, T.E. Hong, C.W. Ahn, E.D. Jeong, K.S. Hong, J.H. Yoon, H.G. Kim, Photocatalytic hydrogen generation from water-methanol mixtures using nanocrystalline zinc ferrite under visible light irradiation, J. Korean Phys. Soc., 55 (2009) 1472-1477.

DOI: 10.3938/jkps.55.1472

Google Scholar

[37] E.D. Jeong, S. M. Yu, J.Y. Yoon, J.S. Bae, C R. Cho, K.T. Lim, Rekha Dom, P.H. Borse and H.G. Kim, Efficient visible light photocatalysis in cubic Sr2FeNbO6, J.Ceram.Proc.Res., 13 (2012) 305-309.

Google Scholar

[38] R.Dom, R.Subasri, N.Y. Hebalkar, A.S. Chary, P.H. Borse, Synthesis of hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using rapid microwave irradiation method, RSC Adv., 33 (2012) 12782-12791.

DOI: 10.1039/c2ra21910g

Google Scholar

[39] A.J. Nozik, Photochemical diodes, Appl. Phys. Lett., 30, (1977)567.

Google Scholar

[40] V.Puddu, R. Mokaya, G.L. Puma, Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity, Chem. Commun. ( 2007), 4749-4751.

DOI: 10.1039/b711559h

Google Scholar

[41] J.H. Kennedy, M.Anderman, Photoelectrolysis of Water at α-Fe2O3 electrodes in Acidic Solution, J. Electro. Chem. Soc, 130 (1983) 848-852.

DOI: 10.1149/1.2119833

Google Scholar

[42] B.D. Chernomordik, H.B. Russell, U.Cvelbar, J.B. Jasinski, V.Kumar, T. Deutsch, M.K. Sunkara, Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting, Nanotechnology, 23 (2012)194009.

DOI: 10.1088/0957-4484/23/19/194009

Google Scholar

[43] K.S. Ahn, Y.Yan, M.S. Kang, J.Y. Kim, S.Shet, H.Wang, J.Turner, M.A. Jassim, CoAl2O4–Fe2O3 p-n nanocomposite electrodes for photoelectrochemical cells, App. Phy. Lett, 95 (2009) 022116-022119.

DOI: 10.1063/1.3183585

Google Scholar

[44] V.M. Aroutiounian, V.M Arakelyan, G.E. Shahnazaryan, et. al., Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3- Nb2O5, Sol. Energy, 80, (2006) 1098- 1111.

DOI: 10.1016/j.solener.2005.10.005

Google Scholar

[45] J.Yin, L.J. Bie, Z.H. Yuan, Photoelectrochemical property of ZnFe2O4/TiO2 double-layered films, Mater.Res. Bull. 42 (2007) 1402-1406.

DOI: 10.1016/j.materresbull.2006.11.009

Google Scholar

[46] K.J. McDonald, K-S. Choi, Synthesis and Photoelectrochemical properties of Fe2O3/ ZnFe2O4 composite photoanodes for use in solar water oxidation, Chem. Mater., 23 (2011) 4863-4869.

DOI: 10.1021/cm202399g

Google Scholar

[47] B.X. Lie, , W.Sun, Z.F. Sun Synthesis of visible-light absorbing CoFe2O4 sensitized TiO2nanotube arrays electrode with enhanced photoelectrochemical performance,Mater.Res.Bull.48,9(2013)3625-3629.

DOI: 10.1016/j.materresbull.2013.04.085

Google Scholar

[48] R.Dom, G.Sivakumar, N.Y. Hebalkar, S.V. Joshi, P.H. Borse, Eco-friendly ferrite nanocomposite photoelectrode for improved solar hydrogen generation, RSC Advances, 3, 35(2013). 15217-15224.

DOI: 10.1039/c3ra42051e

Google Scholar

[49] E.Brinley, K.S. Babu, S.Seal, The solution precursor plasma spray processing of nanomaterials, J.Min.Met.Mater.Soc. 59 (2007)54-59.

DOI: 10.1007/s11837-007-0090-8

Google Scholar

[50] R.Dom, G.S. Kumar, N.Y. Hebalkar, S.V. Joshi, P.H. Borse, Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying, Mater. Res. Bull. 47 (2012) 562-570.

DOI: 10.1016/j.materresbull.2011.12.044

Google Scholar

[51] T.Bak, J.Nowotny, M.Rekas, C.C. Sorrell, Photoelectrochemical hydrogen generation from water using solar energy-material related aspects, Int.J.Hydrogen energy, 2002, 27, 991-1022.

DOI: 10.1016/s0360-3199(02)00022-8

Google Scholar

[52] S.Choudhary, S.Upadhyay, P. Kumar, N.Singh, V.R. Satsangi, R.Shrivastav, S.Dass, Nanostructured bilayered thin films in Photoelectrochemical water splitting-a review, Int.J.Hydrogen energy, 2012, 37, 18713-18730.

DOI: 10.1016/j.ijhydene.2012.10.028

Google Scholar