[1]
Z.Li, W.Luo, M.Zhang, J.Feng, Z.Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook, Energy Environ. Science, 6 (2013) 347-370.
DOI: 10.1039/c2ee22618a
Google Scholar
[2]
A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[3]
H. G. Kim, P. H. Borse, W. Choi, J. S. Lee, Photocatalytic nano-diodes for visible light photocatalysis, Angew. Chem. Int. Ed. 44 (2005) 4585-4589.
DOI: 10.1002/anie.200500064
Google Scholar
[4]
J. S. Jang, D. W. Hwang, J. S. Lee, CdS-AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light, Catal. Today 120 (2007) 174-181.
DOI: 10.1016/j.cattod.2006.07.052
Google Scholar
[5]
J. S. Jang, H. G. Kim, S. M. Ji, S. W. Bae, J. H. Jung, B. H. Shon , J.S. Lee, Formation of crystalline TiO2-xNx and its photocatalytic activity, J. Solid State Chem., 179 (2006) 1067-1075.
DOI: 10.1016/j.jssc.2006.01.004
Google Scholar
[6]
X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor based photocatalytic hydrogen generation, Chem. Rev., 110(2010) 6503–6570.
DOI: 10.1021/cr1001645
Google Scholar
[7]
Lionel Vayssieres, On solar hydrogen nanotechnology, John Wiley & Sons (Asia) Pvt. Ltd, Singapore 2009.
Google Scholar
[8]
M. G. Walter, E. L. Warren, J. R. McKone, S.W. Boettcher, Q. Mi, E. A. Santori, N. S.Lewis, Solar water splitting cells, Chem. Rev., 110 (2010) 6446–6473.
DOI: 10.1021/cr1002326
Google Scholar
[9]
Krishnan Rajeshwar, Robert McConnell, and Stuart Licht, "Solar hydrogen generation, toward a renewable energy future" Springer Science, New York, 2008.
Google Scholar
[10]
P. V. Kamat, K. Tvrdy, D. R. Baker, J. G. Radich, Beyond photovoltaics-semiconductor nanoarchitechture for liquid junction solar cells, Chem. Rev., 110 (2010) 6664–6688
DOI: 10.1021/cr100243p
Google Scholar
[11]
A. Kubacka, M. F. Garcı´a and G. Colon, Advanced nanostructures for solar photocatalytic applications, Chem. Rev., 112 ( 2012),1555–1614.
Google Scholar
[12]
Z. Liu and M. Miyauchi, Visible light induced super hydrophilicity on a WO3/ITO/CaFe2O4 heterojunction thin film, Chem. Commun., (2009), 2002–2004.
DOI: 10.1039/b819312f
Google Scholar
[13]
Z. Zhang, H. Wenckstern, M. Schmidt and M. Grundmann, Wavelength selective metal- semiconductor – metal photodetectors based (Mg,Zn) O - heterostructures, Appl.Phys.Lett., 99, (2011), 083502_1–3.
DOI: 10.1063/1.3628338
Google Scholar
[14]
K. Sivula, F. L. Formal and M. Gratzel, WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach Chem. Mater.,21( 2009) 2862–2867.
DOI: 10.1021/cm900565a
Google Scholar
[15]
H. G. Kim, P. H. Borse, J. S. Jang, O. Jung, Y. J. Suh, J. S. Lee, Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis, Chem. Comm. (2009) 5889-5891.
DOI: 10.1039/b911805e
Google Scholar
[16]
J. S. Jang, H. G. Kim, P. H. Borse and J. S. Lee, Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 photocatalysts under visible light irradiation, Int. J.Hydrogen Energy, 2007, 32, 4786–4791.
DOI: 10.1016/j.ijhydene.2007.06.026
Google Scholar
[17]
H. G. Kim, P. H. Borse, W. Choi, J. S. Lee, Photocatalytic nano-diodes for visible light photo catalysis, Angew. Chem. Int. Ed. 44 (2005) 4585-4589.
DOI: 10.1002/anie.200500064
Google Scholar
[18]
S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu and Y. Chen, Preparation, characteristics and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation, J.Hazard. Mater., 172, (2009) 1415–1423.
DOI: 10.1016/j.jhazmat.2009.08.007
Google Scholar
[19]
S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3, Appl. Energy, 2010, 87, 2230–2236.
DOI: 10.1016/j.apenergy.2009.12.016
Google Scholar
[20]
L. V. Hongjin, L. Ma, P. Zeng, D. Ke and T. Peng, Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photo catalytic hydrogen production under visible light, J. Mater. Chem., 2010, 20, 3665–3672.
DOI: 10.1039/b919897k
Google Scholar
[21]
J.Papp, S. Soled, K. Dwight, A.Wold, Surface acidity and photocatalytic activity of TiO2, WO3/TiO2 and MoO3/TiO2 photocatalysts, Chem. Mater., 6,4 (1994)496-500.
DOI: 10.1021/cm00040a026
Google Scholar
[22]
J.S. Jang, W. Li, S.H. OhJ.S. Lee, Fabrication of CdS/TiO2 nano bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light, Chem. Phys. Lett. 425,4-6( 2006) 278-282.
DOI: 10.1016/j.cplett.2006.05.031
Google Scholar
[23]
Y.Zhang, L. Ma, J. Li, Y. Yu, Insitu fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation, Environ. Sci. Technol., 41,( 2007)6264-6269.
DOI: 10.1021/es070345i.s001
Google Scholar
[24]
A.D. Paola, L. Palmisano, A.M. Venezia, V. Augugliaro, Coupled semiconductor systems for photocatalysis-preparation and characterization of polycrystalline mixed WO3/WS2 powders, J.Phys. Chem. B, 103, (1999) 8236-8244.
DOI: 10.1021/jp9911797
Google Scholar
[25]
A.D. Paola, L. Palmisano, V. Augugliaro, Photocatalytic behavior of mixed WO3/WS2 powders, Catal. Today,58, (2000)141-149.
DOI: 10.1016/s0920-5861(00)00249-2
Google Scholar
[26]
M.Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degradation of phenol over CO3O4/BiVO4 composite under visible light irradiation, J. Phys. Chem. B, 110,( 2006) 2021120116.
DOI: 10.1021/jp063441z
Google Scholar
[27]
H. Huang, X. Lin, J. Xing, W. Wang, Z. Shan, F. Huang, Photocatalytic behavior of mixed WO3/WS2 powders, Mater. Sci. Eng., B, 141,( 2007) 49-54.
Google Scholar
[28]
X.Lin, F. Huang, J. Xing, W.Wang, F. Xu, Heterojunction semiconductor SnO2/SrNb2O6 with an enhanced photocatalytic activity: The significance of chemically bonded interface, Acta Mater. 56, (2008,)2699-2705.
DOI: 10.1016/j.actamat.2008.02.013
Google Scholar
[29]
X.Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic activities of heterojunction semiconductor Bi2O3/BaTiO3-A strategy for the design of efficient combined photocatalysts, J. Phys.Chem. C, 111, (2007)18288-18293.
DOI: 10.1021/jp073955d
Google Scholar
[30]
H.Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, AA solid-state Z-Scheme in CdS-Au-TiO2 three component nanojunction system, Nat. Mater. 5,( 2006, ) 782-786.
DOI: 10.1038/nmat1734
Google Scholar
[31]
H.G. Kim, E.D. Jeong, P.H. Borse, S. Jeong, K. Yong, J.S. Lee, W.Li, S.H. Oh, Photocatalytic ohmic layered nanocomposite for efficient utilization of visible light photons, Appl. Phys. Lett., 89, (2006)064103.
DOI: 10.1063/1.2266237
Google Scholar
[32]
R.Dom, P.H. Borse, Photocatalytic and photoelectron-chemical study of ferrites for water splitting applications: a comparative study, Mat. Sci. Forum, 734 (2013) 334-348, Transtech publications.
DOI: 10.4028/www.scientific.net/msf.734.334
Google Scholar
[33]
R.Dom, H.G. Kim, P.H. Borse, Investigation of solar photoelectrochemical hydrogen generation ability of ferrites for energy production –Mat. Sci. Forum, 764, (2013) 97-115, Transtech publications.
DOI: 10.4028/www.scientific.net/msf.764.97
Google Scholar
[34]
E. Casbeer, V.K. Sharma ,and X-Z Li, Synthesis and photocatalytic activity of ferrites under visible light – a review, Separation and Purification Technology, 87 (2012) 1-14.
DOI: 10.1016/j.seppur.2011.11.034
Google Scholar
[35]
R. Dom, R. Subasri, K. Radha, P. H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg)photocatalyst by microwave irradiation Sol. State. Commun., 151(2011) 470–473.
DOI: 10.1016/j.ssc.2010.12.034
Google Scholar
[36]
P.H. Borse, J.S. Jang, S.J. Hong, J.S. Lee, J.H. Jung, T.E. Hong, C.W. Ahn, E.D. Jeong, K.S. Hong, J.H. Yoon, H.G. Kim, Photocatalytic hydrogen generation from water-methanol mixtures using nanocrystalline zinc ferrite under visible light irradiation, J. Korean Phys. Soc., 55 (2009) 1472-1477.
DOI: 10.3938/jkps.55.1472
Google Scholar
[37]
E.D. Jeong, S. M. Yu, J.Y. Yoon, J.S. Bae, C R. Cho, K.T. Lim, Rekha Dom, P.H. Borse and H.G. Kim, Efficient visible light photocatalysis in cubic Sr2FeNbO6, J.Ceram.Proc.Res., 13 (2012) 305-309.
Google Scholar
[38]
R.Dom, R.Subasri, N.Y. Hebalkar, A.S. Chary, P.H. Borse, Synthesis of hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using rapid microwave irradiation method, RSC Adv., 33 (2012) 12782-12791.
DOI: 10.1039/c2ra21910g
Google Scholar
[39]
A.J. Nozik, Photochemical diodes, Appl. Phys. Lett., 30, (1977)567.
Google Scholar
[40]
V.Puddu, R. Mokaya, G.L. Puma, Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity, Chem. Commun. ( 2007), 4749-4751.
DOI: 10.1039/b711559h
Google Scholar
[41]
J.H. Kennedy, M.Anderman, Photoelectrolysis of Water at α-Fe2O3 electrodes in Acidic Solution, J. Electro. Chem. Soc, 130 (1983) 848-852.
DOI: 10.1149/1.2119833
Google Scholar
[42]
B.D. Chernomordik, H.B. Russell, U.Cvelbar, J.B. Jasinski, V.Kumar, T. Deutsch, M.K. Sunkara, Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting, Nanotechnology, 23 (2012)194009.
DOI: 10.1088/0957-4484/23/19/194009
Google Scholar
[43]
K.S. Ahn, Y.Yan, M.S. Kang, J.Y. Kim, S.Shet, H.Wang, J.Turner, M.A. Jassim, CoAl2O4–Fe2O3 p-n nanocomposite electrodes for photoelectrochemical cells, App. Phy. Lett, 95 (2009) 022116-022119.
DOI: 10.1063/1.3183585
Google Scholar
[44]
V.M. Aroutiounian, V.M Arakelyan, G.E. Shahnazaryan, et. al., Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3- Nb2O5, Sol. Energy, 80, (2006) 1098- 1111.
DOI: 10.1016/j.solener.2005.10.005
Google Scholar
[45]
J.Yin, L.J. Bie, Z.H. Yuan, Photoelectrochemical property of ZnFe2O4/TiO2 double-layered films, Mater.Res. Bull. 42 (2007) 1402-1406.
DOI: 10.1016/j.materresbull.2006.11.009
Google Scholar
[46]
K.J. McDonald, K-S. Choi, Synthesis and Photoelectrochemical properties of Fe2O3/ ZnFe2O4 composite photoanodes for use in solar water oxidation, Chem. Mater., 23 (2011) 4863-4869.
DOI: 10.1021/cm202399g
Google Scholar
[47]
B.X. Lie, , W.Sun, Z.F. Sun Synthesis of visible-light absorbing CoFe2O4 sensitized TiO2nanotube arrays electrode with enhanced photoelectrochemical performance,Mater.Res.Bull.48,9(2013)3625-3629.
DOI: 10.1016/j.materresbull.2013.04.085
Google Scholar
[48]
R.Dom, G.Sivakumar, N.Y. Hebalkar, S.V. Joshi, P.H. Borse, Eco-friendly ferrite nanocomposite photoelectrode for improved solar hydrogen generation, RSC Advances, 3, 35(2013). 15217-15224.
DOI: 10.1039/c3ra42051e
Google Scholar
[49]
E.Brinley, K.S. Babu, S.Seal, The solution precursor plasma spray processing of nanomaterials, J.Min.Met.Mater.Soc. 59 (2007)54-59.
DOI: 10.1007/s11837-007-0090-8
Google Scholar
[50]
R.Dom, G.S. Kumar, N.Y. Hebalkar, S.V. Joshi, P.H. Borse, Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying, Mater. Res. Bull. 47 (2012) 562-570.
DOI: 10.1016/j.materresbull.2011.12.044
Google Scholar
[51]
T.Bak, J.Nowotny, M.Rekas, C.C. Sorrell, Photoelectrochemical hydrogen generation from water using solar energy-material related aspects, Int.J.Hydrogen energy, 2002, 27, 991-1022.
DOI: 10.1016/s0360-3199(02)00022-8
Google Scholar
[52]
S.Choudhary, S.Upadhyay, P. Kumar, N.Singh, V.R. Satsangi, R.Shrivastav, S.Dass, Nanostructured bilayered thin films in Photoelectrochemical water splitting-a review, Int.J.Hydrogen energy, 2012, 37, 18713-18730.
DOI: 10.1016/j.ijhydene.2012.10.028
Google Scholar