[1]
D.G. Morris, M.A. Muñoz-Morris, Recent Developments Toward the Application of Iron Aluminides in Fossil Fuel Technologies, Advanced Engineering Materials, 13 (2011) 43-47.
DOI: 10.1002/adem.201000210
Google Scholar
[2]
S.C. Deevi, V.K. Sikka, Nickel and iron aluminides: an overview on properties, processing, and applications, Intermetallics, 4 (1996) 5, 357-375.
DOI: 10.1016/0966-9795(95)00056-9
Google Scholar
[3]
J. Bystrzycki, Static recrystallization of shock-wave (explosively) deformed Fe-40 at% Al-Zr-B intermetallic, Intermetallics, 8 (2000) 2, 89-98.
DOI: 10.1016/s0966-9795(99)00071-0
Google Scholar
[4]
N.S. Stoloff, C.T. Liu, S.C. Deevi, Emerging applications of intermetallics, Intermetallics, 8 (2000) 9-11, 1313-1320.
DOI: 10.1016/s0966-9795(00)00077-7
Google Scholar
[5]
Y.D. Huang, W.Y. Yang, Z.Q. Sun, Improvement of room temperature tensile properties for Fe3Al-based alloys by thermomechanical and annealing processes, Mat. Sci. Eng. A-Struct., 263 (1999) 1, 75–84.
DOI: 10.1016/s0921-5093(98)01039-9
Google Scholar
[6]
R.S. Sundar, R.G. Baligidad, Y.V.R.K. Prasad, D.H. Sastry, Processing of iron aluminides, Mat. Sci. Eng. A-Struct., 258 (1998) 1-2, 219-228.
DOI: 10.1016/s0921-5093(98)00937-x
Google Scholar
[7]
I. Schindler, V. Šumšal, P. Hanus, Hot Rolling of Brittle Aluminide of Type Fe-40Al-Zr-B, Hutnické listy, 64 (2011) 6, 56-61.
Google Scholar
[8]
I. Schindler et al., Activation Energy in Hot Forming of Selected Fe–40at. %Al Type Intermetallic Compounds, Acta Phys. Pol. A, 122 (2012) 3, 610-613.
DOI: 10.12693/aphyspola.122.610
Google Scholar
[9]
Y.V.R.K. Prasad, D.H. Sastry, S.C. Deevi, Processing maps for hot working of a P/M iron aluminide alloy, Intermetallics, 8 (2000) 9-11, 1067-1074.
DOI: 10.1016/s0966-9795(00)00041-8
Google Scholar
[10]
I. Samajdar, P. Ratchev, B. Verbden, D. Schryver, Recrystallization and grain growth in a B2 iron aluminide alloy, Intermetallics, 6 (1998) 5, 419-425.
DOI: 10.1016/s0966-9795(97)00092-7
Google Scholar
[11]
S. Gialanella et al., Microstructural and kinetic aspects of the transformations induced in a FeAl alloy by ball-milling and thermal treatments, Acta Materialia, 46 (1998) 9, 3305-3316.
DOI: 10.1016/s1359-6454(97)00484-9
Google Scholar
[12]
I. Baker, P.R. Munroe, Mechanical properties of FeAl, Inter. Mater. Rev., 42 (1997) 5, 181-205.
Google Scholar
[13]
P. Haušild, M. Karlík, V. Šíma, D.T.L. Alexander, Microstructure and mechanical properties of hot rolled Fe–40 at. % Al intermetallic alloys with Zr and B addition, Mater. Sci. Tech. Ser., 27 (2011) 9, 1448-1452.
DOI: 10.1179/026708310x12738371693012
Google Scholar
[14]
I. Schindler, P. Kratochvíl, P. Prokopčáková, P. Kozelský, Forming of cast Fe – 45 at. % Al alloy with high content of carbon, Intermetallics, 18 (2010) 4, 745-747.
DOI: 10.1016/j.intermet.2009.11.005
Google Scholar
[15]
V. Šíma, P. Kratochvíl, P. Kozelský, I. Schindler, P. Hána, FeAl-based alloys cast in an ultra-sound field, International Journal of Materials Research, 100 (2009) 3, 382-385.
DOI: 10.3139/146.110041
Google Scholar
[16]
Y. Yang, I. Baker, Recrystallization of FeAl and Ni3Al with and without boron, Scripta Materialia, 34 (1996) 5, 803-807.
DOI: 10.1016/1359-6462(95)00588-9
Google Scholar