The Influence of Microstructures of Ceramics on the Monitoring of Environmental Humidity

Article Preview

Abstract:

The sensing elements for humidity has been vastly researched to be applied in several areas, since automotive and food industries up to automation in the agricultural production and in the environmental monitoring. In this work, ceramic material are focused, owing to their unique structure, consisting of grains, grain boundaries, surfaces and pores, the control of which allow to obtain suitable microstructure to be used as humidity sensors. In this work, the influence of the relative humidity on the electrical conductivity of the ceramic sensing elements of ZrO2 and of TiO2, under specific climatic conditions, is investigated. In this sense, the ceramics used as humidity sensing elements were manufactured through conventional ceramic processing. The sintered ceramics were characterized through X-ray diffractometry techniques, scanning electron microscopy, apparent density by the Archimedes principle and linear retraction. The results showed the development of a solid solution of ZrO2-TiO2. The microstructures presented a homogeneous distribution of pores. The ceramic tablets, sintered at 1100 °C, evidenced a linear behaviour in the curves capacitance versus environment humidity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 798-799)

Pages:

713-718

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Visscher, G. J. W. Humidity and moisture measurement. In: WEBSTER, J. G. (ed). Measurement, instrumentation and sensors handbook. 1st Ed. New York: CRC Press LLC, 1999. 2596p. ISBN 0-8493-2145-X.

Google Scholar

[2] Nawrocki, W. Measurement systems and sensors. 1st Ed. Boston/London: ARTECH HOUSE, INC., 2005. 338p. ISBN 1-58053-945-9.

Google Scholar

[3] Kulwicki, B. M. Humidity sensors. J. Am. Ceram. Soc., v. 74, 697-708p., (1991).

Google Scholar

[4] Fagan, J. G.; Amarakoon, V. R. W. Humidity sensors. Am. Ceram. Soc. Bull., v. 72(3), 119-132p., (1993).

Google Scholar

[5] Yang, S.; WU, J. Ceramic humidity sensors. J. Mater. Sci., v. 26, 631-635p., (1991).

Google Scholar

[6] Arndt, J. IN Gopel, W.; Hesse, J.; Zemel, J. N. (eds. ). Sensors: A comprehensive survey, Vol. 1, Weinheim: VCH, 247-278p., (1989).

Google Scholar

[7] Oliveira, R. M.; Nono, M. C. A.; Kuranaga, C.; Wada, M. Development of ZrO2-TiO2 porous ceramic as soil humidity sensor for application in environmental monitoring. Mater. Sci. Forum, v. 30-531, pp.14-419, (2006).

DOI: 10.4028/www.scientific.net/msf.530-531.414

Google Scholar

[8] Oliveira, R. M.; Nono, M. C. A.; Britto Filho, G. P. Influence of Nb2O5 on the electrical properties of porous ZrO2-TiO2 ceramic used as soil humidity sensor for environmental monitoring. Mater. Sci. Forum, v. 91-593, pp.02-407, (2008).

DOI: 10.4028/www.scientific.net/msf.591-593.402

Google Scholar

[9] Pelino, M.; Cantalini, C; Faccio, M. Principles and applications of ceramic humidity sensors. Active and Passive Elec. Comp., v. 16, 69-87p., (1994).

DOI: 10.1155/1994/91016

Google Scholar

[10] Traversa, E. Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sensors and Actuators B, v. 23, 135-156p., (1995).

DOI: 10.1016/0925-4005(94)01268-m

Google Scholar

[11] Ishizaki, K.; Komarneni, S.; Nanko, M. Porous materials: Process technology and applications. Materials Technology Series. Dordrecht, Boston and London: Kluwer Academic Publishers, (1998).

DOI: 10.1007/978-1-4615-5811-8_5

Google Scholar

[12] Matsuguchi, M.; Sadaoka, Y.; Sakai, Y.; Kuroiwa, T.; Ito, A. A capacitive-type humidity sensor using cross-linked poly (methyl methacrylate) thin films. J. Electrochem. Soc., v. 138, 1862-1865p., (1991).

DOI: 10.1149/1.2085886

Google Scholar

[13] Kuroiwa, T.; Hayashi, T.; Ito, A.; Matsuguchi, M.; Sadaoka, Y.; Sakai, Y. A capacitive relative humidity sensor using a polyimide sensing material. Tech. Digest, 7th Int. Conf. Solid- State Sensors and Actuators (Transducers '93), Yokohama, Japan, June 7-10, 487-490p., (1993).

DOI: 10.1016/0925-4005(93)85331-4

Google Scholar

[14] Mulla, I. S.; Pradhan, S. D.; Vijayamohanan, K. Humidity-sensing behaviour of surface-modified zirconia. Sensors and Actuators A, v. 57, 217-221p., (1996).

DOI: 10.1016/s0924-4247(97)80117-3

Google Scholar

[15] Garvie, R. C. High temperatures oxides (Part II). In: ALPER, A. M. New York and London: Academic Press, 1970. 118-132p.

Google Scholar

[16] Grandke, T.; KO, W. H. Fundamentals and general aspects. Sensors, vol. 1. Weinheim, New York, Basel, Cambridge: VCH, 1992. 266-268p.

Google Scholar

[17] Yu, J.; Zhao, X.; Hao, Q. Z.; Wang. G. Preparation and characterization of superhydrophilic porous TiO2 coating films. Mater. Chem. Phys., v. 68, 253-259p., (2001).

Google Scholar

[18] Reed, J. S. Principles of ceramics processing. 2nd Ed. New York, Chichester, Brisbane, Toronto: John Wiley & Sons, Inc., 1995, 658p.

Google Scholar

[19] Chiang, Y. M.; Birnie, D. P.; Kingery, W. D. Physical ceramics: Principles for ceramic science and engineering. 1st Ed. New York: John Wiley & Sons, 1996. 522p.

Google Scholar

[20] Ring, T. A. Fundamentals of ceramic powder processing and synthesis. 1st Ed. New York: Academic Press, 1995. 961p.

Google Scholar

[21] Patnaik, P. Handbook of inorganic chemicals. 1st Ed. New York: McGraw-Hill, 2003. 546p. ISBN 0-07-049439-8.

Google Scholar

[22] Bouzoubaa, A.; Markovits, A.; Calatayud, M.; Minot, C. Comparison of the Reduction of Metal Oxide Surfaces: TiO2-anatase, TiO2-rutile and SnO2 rutile. Laboratoire de Chimie The´orique, Universite, France, (2005).

DOI: 10.1016/j.susc.2005.03.029

Google Scholar