Comparative Study of Organoclays with Ionic Surfactant

Article Preview

Abstract:

The clays of the smectite group, mainly montmorillonite, are widely used in the production of organoclays due to the small dimensions of the crystals, high cation exchange capacity (CEC), and swelling capacity in water, which lead to a rapid and efficient intercalation of organic compounds used in the synthesis. In this context, this research was intended to make a comparative study of clays organofilized with ionic surfactants through their respective CEC. We selected four samples of bentonites, namely Chocolate (Boa Vista, PB), Brasgel (industrial), Dark Bentonite (Pedra Lavrada, PB) and M400 Bentonite (industrial). The natural samples were characterized through XRD, EDX, TA and GA, and the organofilized ones through XRD. The characterization tests showed that the samples are composed of clay minerals of the smectite group, the CEC values ​​were insignificant changes when comparing the values ​​of natural and activated clays with sodium carbonate. And the levels indicated by the CEC for the ionic surfactant Praepagem HY proved insufficient to transform the organophilic clays, as the nominees for the ionic surfactant Praepagem WB led to adequate results regarding the incorporation of the surfactant in the clay fraction of the studied samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 798-799)

Pages:

9-14

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. S. Ross, E. V. Shannon. The Minerals of Bentonite and Related Clays and their Physical Properties.J. Am. Ceram. Soc. 9, (1926).

Google Scholar

[2] A. R. V. Silva, H. C. Ferreira. Esmectitas organofílicas: conceitos, estruturas, propriedades, síntese, usos industriais e produtores/fornecedores nacionais e internacionais. Revista Eletrônica Materiais e Processos 3, (2008).

Google Scholar

[3] G. Lagaly, Clay Miner. 16, (1981).

Google Scholar

[4] F. R. Valenzuela Díaz, P. Souza Santos, H. L. Souza Santos. A Importânica das Argilas Industriais Brasileiras. Parte II. Química Industrialv. 5, n. 42, (1992).

Google Scholar

[5] S. M. Lee, D. Tiwari. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59-6084– 102, (2012).

DOI: 10.1016/j.clay.2012.02.006

Google Scholar

[6] J. F. Lee, M. M. Mortland, C. Tchiou, S. A. Boyd. Chem. Soc. Faraday Trans. 1 (1985) 2953.

Google Scholar

[7] T. Permien, G. Lagaly. Colloid Polym. Sci. 272 (1990) 1306.

Google Scholar

[8] F. R. Valenzuela Díaz. A Importânica das Argilas Industriais Brasileiras. Parte I. Química Industrial v. 5, n. 42, (1992).

Google Scholar

[9] A. P. Batista, R. R. Menezes, L. N. Marques, L. A. Campos, G. A. Neves, H. C. Ferreira. Caracterização de argilas bentoníticas de Cubati-PB. Revista Eletrônica de Materiais e Processos, v. 4. 3. Campina Grande, PB, Brasil, (2009).

DOI: 10.1590/s0366-69132009000400003

Google Scholar

[10] H. C. Ferreira, T. Chen, A. R. Zandonadi, P. Souza Santos. Determinação da CTC de Argilas Montmoriloníticas pelo Método de Adsorção de Azul de Metileno. Cerâmica 20, 79, (1974).

Google Scholar

[11] R. R. Menezes, L. R. L. Melo, F. A. S. Fonseca, H. S. Ferreira, A. B. Martins, G. A. Neves. Caracterização de argilas bentoníticas do Municipio de Sussego, Paraíba, Brasil. Revista Eletrônica de Materiais e Processos, v. 3. 2, pp.36-43, (2008).

DOI: 10.1590/s0366-69132009000200008

Google Scholar

[12] H. S. Ferreira, Otimização do Processo de Organofilização de Bentonitas Visando seu Uso em Fluidos de Perfuração não Aquosos. 2009. Tese de Doutorado em Ciências e Engenharia de Materiais – UFCG.

DOI: 10.1590/s0366-69132012000300007

Google Scholar