[1]
J.H. Zhou C.K. Pang,F. L. Lewis , Tool Wear Forecast Using Dominant Feature Identification of Acoustic Emissions, IEEE.T. Instrum. Meas, 60(2011) 2654-2671.
DOI: 10.1109/tim.2010.2050974
Google Scholar
[2]
H.T. Chen , Research on FCA-based monitoring of the CNC turning tool wear. Journal of Beijing institute of technology, 20(2002) 276-279.
Google Scholar
[3]
O. Geramifard, J.X. Xu, Continuous Health Condition Monitoring: A Single Hidden Semi-Markov Model Approach , Mech. Syst. Signal Process, (2011)1345-1352.
DOI: 10.1109/icphm.2011.6024333
Google Scholar
[4]
D. D'Addona, ANN tool wear modelling in the machining of nickel superalloy industrial , J. Manuf. Sci. Tech, 4(2011) 33-37.
Google Scholar
[5]
S. Binsaeid, Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion, J. Mater. Proc. Tech, 209 (2009) 4728–4738.
DOI: 10.1016/j.jmatprotec.2008.11.038
Google Scholar
[6]
W.L. Li, P. Fu, W.Q. Cao , Study on feature selection and identification method of tool wear states based on SVM, International Journal on Smart Sensing and Intelligent Systems, 6(2)( 2013) 448-465.
DOI: 10.21307/ijssis-2017-549
Google Scholar
[7]
B. Kaya,C. Oysu, A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm, J. Eng. Manuf, 226(2012) 1808-1818.
DOI: 10.1177/0954405412458047
Google Scholar
[8]
T. Xu, Cutting Tool Wear Identification based on Wavelet Package SVM, Proceedings of the 8th World Congress on Intelligent Control Automation, (2010)5953-5957.
DOI: 10.1109/wcica.2010.5554471
Google Scholar
[9]
P. Nie, H.Y. Xu, Y.C. Liu, Aviation tool wear states identifyingbased on EMD and SVM, 2011 Second International Conference on Digital Manufacturing &Automation, (2011)246-269.
DOI: 10.1109/icdma.2011.67
Google Scholar