[1]
Shin Y C, Laser assisted machining, Machining Technology, 2000, 11(3): 1-6.
Google Scholar
[2]
Chryssolouris G, Anifantis N, Karagiannis S, Laser assisted machining: an overview, Journal of manufacturing science and engineering, 1997, 119(4B): 766-769.
DOI: 10.1115/1.2836822
Google Scholar
[3]
Huang Qianrao, Li Hankang, Superalloy, Metallurgical Industry Press, (2000).
Google Scholar
[4]
Ezugwu E O, Bonney J, Yamane Y, An overview of the machinability of aeroengine alloys, Journal of Materials Processing Technology, 2003, 134(2): 233-253.
DOI: 10.1016/s0924-0136(02)01042-7
Google Scholar
[5]
Novak J W, Shin Y C, Incropera F P, Assessment of plasma enhanced machining for improved machinability of Inconel 718, Journal of manufacturing science and engineering, 1997, 119(1): 125-129.
DOI: 10.1115/1.2836550
Google Scholar
[6]
Devillez A, Schneider F, Dominiak S, et al, Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools, Wear, 2007, 262(7): 931-942.
DOI: 10.1016/j.wear.2006.10.009
Google Scholar
[7]
Arunachalam R, Mannan M A, Machinability of nickel-based high temperature alloys, Machining Science and Technology, 2000, 4(1): 127-168.
DOI: 10.1080/10940340008945703
Google Scholar
[8]
Anderson M, Patwa R, Shin Y C, Laser-assisted machining of Inconel 718 with an economic analysis, International Journal of Machine Tools and Manufacture,2006,46(14):1879-1891.
DOI: 10.1016/j.ijmachtools.2005.11.005
Google Scholar
[9]
Rajagopal S, Plankenhorn D J, Hill V L, Machining aerospace alloys with the aid of a 15 kW laser, Journal of Applied Metalworking, 1982, 2(3): 170-184.
DOI: 10.1007/bf02834035
Google Scholar
[10]
Boyer R R, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A, 1996, 213(1): 103-114.
Google Scholar
[11]
Ezugwu E O, Wang Z M, Titanium alloys and their machinability—a review, Journal of Materials Processing Technology, 1997, 68(3): 262-274.
DOI: 10.1016/s0924-0136(96)00030-1
Google Scholar
[12]
Dandekar CR, Shin YC, Barnes J, Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining, Int J Mach Tool Manuf 50(2): 174–182.
DOI: 10.1016/j.ijmachtools.2009.10.013
Google Scholar
[13]
Wiedenmann R, Liebl S, Zaeh M F, Influencing Factors and Workpiece's Microstructure in Laser-Assisted Milling of Titanium, Physics Procedia, 2012, 39: 265-276.
DOI: 10.1016/j.phpro.2012.10.038
Google Scholar
[14]
Dandekar CR, Shin YC, Laser-assisted machining of a fiber reinforced Al-2%Cu metal matrix composite, J Manuf Sci Eng 132 (2): 061004.
Google Scholar
[15]
Barnes S, Pashby IR, Mok DK, The effect of workpiece temperature on the machinability of an aluminum/SiC MMC, J Manuf Sci Eng 118: 422–427.
DOI: 10.1115/1.2831047
Google Scholar
[16]
Dandekar C R, Shin Y C, Experimental evaluation of laser-assisted machining of silicon carbide particle-reinforced aluminum matrix composites, The International Journal of Advanced Manufacturing Technology, 2013: 1-8.
DOI: 10.1007/s00170-012-4443-2
Google Scholar
[17]
R. Bejjani, Laser assisted turning of titanium metal matrix composite, CIRP Annals- Manufacturing Technology, 2011: 61–64.
DOI: 10.1016/j.cirp.2011.03.086
Google Scholar
[18]
Wang Y, Yang LJ, Wang NJ, An investigation of laserassisted machining of Al2O3 particle reinforced aluminum matrix composite, J Mater Process Technol 129: 268–272.
DOI: 10.1016/s0924-0136(02)00616-7
Google Scholar