Comparative Study of Creep Resistance of a Ti-6Al-4V Alloy with Metallic and Ceramic Coatings

Article Preview

Abstract:

Titanium and its alloys are largely used for many industrial applications due to their high mechanical and corrosion resistance and low specific mass. Ti-6Al-4V alloy is the most used in aerospace industry and it is applied for the manufacturing of aircraft blades and steam turbines. This alloy has high affinity with oxygen which constrains its application at high temperatures due to creep resistance reduction. Methods to increase creep resistance of Ti-6Al-4V alloys includes the use of metallic coatings and its combination with ceramic thermal barrier coating deposition on the material surface. The aim of this work is to compare the creep behavior of Ti-6Al-4V alloy in three different conditions: uncoated, metallic coated, metallic + ceramic coated specimens. The metallic coating layer (CoNiCrAlY) and the ceramic coating (ZrO2 + 8wt%Y2O3) are both applied by plasma spray deposition technique. The specimens were submitted to constant load creep tests at 600oC and stress conditions of 125, 250 and 319MPa. Specimens of metallic + ceramic coating have presented higher creep resistance, longer lifetime and lower stationary creep rate when compared to uncoated and metallic coated specimens.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

472-476

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Guleryuz, H. Cimenoglu: J. Alloy Compd. Vol. 472 (2009), p.241.

Google Scholar

[2] C. Leyens, M. Peters: Titanium and Titanium Alloys, Fundamentals and Applications. (Wiley-VCH, Weinheim 2003).

Google Scholar

[3] I. Gurrappa, A.K. Gogia: Surf. Coat. Tech. Vol. 139 (2001), p.216.

Google Scholar

[4] D.A.P. Reis, C.R.M. Silva, M.C.A. Nono, M.J.R.B. Barboza, F. Piorino Neto, E.A.C. Perez, D.R. Santos: III Congresso Nacional De Engenharia Mecânica (CONEM). Belém 10 a 13 de Agosto de 2004. Proceeding.. Belém 2004. (PA).

DOI: 10.26678/abcm.conem2022.con22-0761

Google Scholar

[5] G. Hamouda: Int. J. Fatigue Vol. 32 (2010), p.1448.

Google Scholar

[6] I.J. Polmear: Metallurgy of the Light Metals. (Second ed. Edward Arnold, London, 1989).

Google Scholar

[7] G. Lütjering: Mater. Sci. Eng. A. Vol. 263 (1999), p.117.

Google Scholar

[8] T. Sakai, M. Ohashi, K. Chiba, J.J. Jonas: Acta Metall. Vol. 36 (1988), p.1781.

Google Scholar

[9] D.A.P. Reis: Estudo do recobrimento cerâmico e da atmosfera de ensaio na fluência de liga metálica refratária de titânio. Doutorado (Tese). São José dos Campos, 2005. Instituto Nacional de Pesquisas Espaciais (INPE). (SP).

DOI: 10.18605/2175-7275/cereus.v10n2p193-210

Google Scholar

[10] M.J.R. Barboza, E.A.C. Perez, M.M. Medeiros, D.A.P. Reis, M.C.A. Nono, F. Piorino Neto, C.R.M. Silva: Mater. Sci. Eng. A. Vol. 428 (2006), p.319.

Google Scholar

[11] D.A.P. Reis, C.R.M. Silva, M.C.A. Nono, M.J.R. Barboza, F. Piorino Neto, E.A.C. Perez: Mater. High Temp. Vol. 22 (2005), p.449.

DOI: 10.3184/096034005782744227

Google Scholar

[12] D.S. Almeida: Estudo de revestimentos cerâmicos sobre substrato metálico obtidos por deposição física de vapores por feixe de elétrons para aplicação como barreira térmica. Doutorado (Tese). São José dos Campos, 2005. Instituto Nacional de Pesquisas Espaciais (INPE). (SP).

DOI: 10.11606/d.85.2006.tde-22052007-145313

Google Scholar

[13] D. Stöver, C. Funke: J. Mater. Process. Tech. Vol. 92-93 (1999), p.195.

Google Scholar

[14] H. Xu, S. Goug, L. Deng: Thin Solid Films Vol. 334 (1998), p.98.

Google Scholar

[15] ASM Handbook, Mechanical Testing and Evaluation. 8 (2000) 786.

Google Scholar

[16] American Society for Testing and Materials, B-265-89, Philadelphia, (1990).

Google Scholar

[17] American Society for Testing and Materials, E-139-06, Philadelphia, (2006).

Google Scholar