Chemical, Structural and Mechanical Study of Metallic Biomaterials Used in Hip Arthroplasty

Article Preview

Abstract:

Arthroplasty is a surgery that aims to replace the defective joint surfaces, aiming to restore their functions. Is employed in this type of surgery that metallic materials play a key role in the constitution of orthopedic prostheses. In this context, we studied the chemical composition, mechanical and structural behavior of stainless steel developed for applications as biomaterials used in the manufacture of orthopedic implants. In this paper, two prostheses were analyzed established brands in the market. Proceeded through the chemical Spectroscopy Energy Dispersive X-ray (EDX) analysis. Characterized the crystal structures of these materials by diffraction of X-ray and mechanical behavior using tensile test. We compared the results of chemical composition and strength of the samples according to ASTM F-138 (2008). The results of EDX showed the presence of chloride in stainless steel alloys as an impurity that can compromise the durability of the prosthesis. The XRD patterns showed the presence in austenitic stainless steel alloys. As the tensile strength of the alloys analyzed, values that are consistent with those presented in the standards were recorded. In a general analysis, it became apparent incompatibility of assessed as biomaterials for use in prosthetic alloys, although meets the structural and mechanical requirements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

507-511

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Cohen: Tratado de Ortopedia. (Editora Roca São Paulo, 2007).

Google Scholar

[2] M.A.P. Carvalho, C.C.D. Lanna, M.B. Bértolo: Reumatologia: Diagnóstico E Tratamento. (Guanabara Koogan Rio de Janeiro, 2008).

Google Scholar

[3] S. Simioni: Manual da Qualidade de Implante em Artroplastia de Quadril. (Editora Champagnat Curitiba, 2012).

Google Scholar

[4] J.B. Park, R.S. Lakes: Biomaterials: An Introduction. (Springer New York, 2007).

Google Scholar

[5] R.L. Oréfice, M. de Magalhães Pereira, H.S. Mansur: Biomateriais: Fundamentos E Aplicações. (Cultura Médica Rio de Janeiro, 2006).

Google Scholar

[6] W. Calister Jr: Ciência e Engenharia de Materiais: Uma Introdução. (LTC, Rio de Janeiro 2002).

Google Scholar

[7] Y. Hedberg, K. Midander, I. Odnevall Wallinder: Integrated Environmental Assessment and Management Vol. 6 (2010), p.456.

Google Scholar

[8] I. Gotman: Journal of Endourology Vol. 11 (1997), pp.383-389.

Google Scholar

[9] S.V. Bhat: Biomaterials. (Alpha Science International Ltd New Delhi, 2002).

Google Scholar

[10] J. Disegi, L. Eschbach: Injury Vol. 31 (2000), p. D2.

Google Scholar

[11] B. Gam, D. KS, V. MG: Utilização De Aços Inoxidáveis Em Implantes. (BIT - Boletim Informativo de Tecnovigilância, Edição especial 2011).

Google Scholar

[12] E.J. Giordani, I. Ferreira, O. Balancin: Revista Escola de Minas Vol. 60 (2007), p.55.

Google Scholar

[13] S.A. de Souza: Composição Química Dos Aços. (Edgard Blücher São Paulo, 2006).

Google Scholar

[14] E.J. Giordani: Propriedades, microestruturas e mecanismos de nucleação de trincas por fadiga de dois aços inoxidaveis austeniticos utilizados como biomateriais, Universidade Estadual de Campinas - UNICAMP, São Paulo, (2001).

DOI: 10.47749/t/unicamp.2001.239948

Google Scholar

[15] M.A. Larosa: Análise da resistência à corrosão e ao desgaste do aço inoxidável austenítico ASTM F 138 tratado por laser, Universidade Estadual de Campinas - UNICAMP, São Paulo, (2010).

DOI: 10.47749/t/unicamp.2010.774990

Google Scholar