Coercivity Mechanism in Hard and Soft Sintered Magnetic Materials

Article Preview

Abstract:

The coercivity in soft and hard magnetic materials has different origin. The high coercivity of barium ferrite, SmCo5, Sm2Co17 or Nd2Fe14B is due to high magnetocrystalline anisotropy, and the processing aims very small grain size (nanocrystalline). In the case of soft magnetic materials, the coercivity has origin in defects that are able to stop domain wall movement, as for example grain boundaries, inclusions or dislocations. Soft magnetic materials in general present large domain wall thickness (thousands of Angstroms for pure iron), whereas domain wall thickness is ~ 50 Angstroms for SmCo5 and Nd2Fe14B. The differences between hard and soft magnetic behavior are commented and discussed. The domain wall energy and thickness can be used as parameters for classifying soft and hard magnetic behavior. Other examples of soft magnetic materials are the amorphous alloys and the nanocrystalline soft magnetic materials with grain size very below the single domain particle size. The soft behaviour in amorphous and soft nanocrystalline materials is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

563-568

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.J. Overshott: IEE Proceedings A, Vol. 138, (1991), pp.22-30.

Google Scholar

[2] P. B. Hirsch. Herald of the Russian Academy of Sciences. Volume 76, (2006) , pp.430-436.

Google Scholar

[3] F. A. Franco, M. F. R. González, M. F. de Campos, L. R. Padovese: Journal of Nondestructive Evaluation Vol. 32 ( 2013), pp.93-103.

Google Scholar

[4] M. F. de Campos: Materials Science Forum Vol. 727-728 (2012), pp.157-162.

Google Scholar

[5] T. Stijntjes, B. van Loon: Proceedings of the IEEE Vol. 96 (2008), pp.900-904.

Google Scholar

[6] Marc J. de Vries, F. Kees Boersma: 80 Years of Research at the Philips Natuurkundig Laboratorium (1914-1994): The Role of the Nat. Lab. at Philips,. Pallas Publications, Amsterdam University Press, (2006).

DOI: 10.5117/9789085550518

Google Scholar

[7] F. R. F. da Silva, F. A. Sampaio da Silva, C. G. Hauegen, S. R. Janasi, J. F. C. Lins, M. F. de Campos. In: H. Fukunaga, S. Sugimoto (Eds. ), Proceedings of the 22th International Workshop on Rare-Earth Permanent Magnets and Their Applications, Nagasaki, Japan, 2012, p.448.

DOI: 10.4028/www.scientific.net/msf.727-728.135

Google Scholar

[8] M. F. de Campos, F. J. G. Landgraf: Materials Science Forum Vols. 498-499 (2005) pp.129-133.

Google Scholar

[9] R. Szymczak, H. Szymczak and E. Burzo: IEEE Trans. Magn. Vol. MAG-23 (1987), p.2536.

Google Scholar

[10] Wole Soboyejo. Mechanical Properties of Engineered Materials,. Marcel Dekker, CRC Press, New York, (2003).

Google Scholar

[11] M. F. de Campos, F. A. Sampaio da Silva, E. A. Perigo, J. A. de Castro. Journal of Magnetism and Magnetic Materials, Vol. 345 (2013), pp.147-152.

DOI: 10.1016/j.jmmm.2013.06.028

Google Scholar

[12] F. A. Sampaio da Silva, N. A. Castro, M. F. de Campos: Journal of Magnetism and Magnetic Materials Vol. 328 (2013), p.53–57.

Google Scholar

[13] M.F. de Campos: Materials Science Forum, Vol. 591–593 (2008), p.8–12.

Google Scholar

[14] M. F. de Campos: Materials Science Forum Vols. 530-531 (2006) pp.146-151.

Google Scholar

[15] M. F. de Campos, S. A. Romero, F. J. G. Landgraf and F. P. Missell: Journal of Physics: Conference Series Vol. 303 (2011), p.012049.

Google Scholar

[16] S.A. Romero, M.F. de Campos, H. Rechenberg and F. P. Missell: Journal of Magnetism and Magnetic Materials Vol. 320 (2008), p. e73-e76.

DOI: 10.1016/j.jmmm.2008.02.055

Google Scholar

[17] M.F. de Campos: Materials Science Forum Vols. 660-661 (2010), pp.284-289.

Google Scholar

[18] E.C. Stoner and E. P. Wohlfarth: IEEE Transactions on Magnetics Vol. 27(1991), pp.3475-3518.

Google Scholar

[19] E. Kondorsky: Physik. Z. Sowjetunion Vol. 11 (1937), pp.597-620.

Google Scholar

[20] D. V. Ratnam, W. R. Buessem: J. Appl. Phys. Vol. 43 (1972), pp.1291-1293.

Google Scholar

[21] M.F. de Campos, J. A. de Castro: Materials Science Forum Vols. 660-661 (2010), pp.279-283.

Google Scholar

[22] Y. Matsuura. In: H. Fukunaga, S. Sugimoto (Eds. ), Proceedings of the 22th International Workshop on Rare-Earth Permanent Magnets and Their Applications, Nagasaki, Japan, 2012, pp.147-150.

Google Scholar

[23] Yutaka Matsuura, Jun Hoshijima, Rintaro Ishii: Journal of Magnetism and Magnetic Materials Vol. 336 (2013), p.88–92.

Google Scholar

[24] A. Mager: Ann. Phys. Lpz. Vol. 11 (1952), p.15.

Google Scholar

[25] R. Ramesh, G. Thomas and B. M. Ma: J. Appl. Phys. Vol. 64 (1988), p.6416.

Google Scholar

[26] K. Uestuener, M. Katter, and W. Rodewald: IEEE Trans. Magn. Vol. 42 (2006), p.2897.

Google Scholar

[27] M.F. de Campos, M. Emura, F.J.G. Landgraf: J. Magn. Magn. Mat. Vol. 304 (2006), p. e593.

Google Scholar

[28] D. A. Porter, K. E. Easterling. Phase transformation in metals and alloys. 2nd Edition. 1992. Chapman & Hall London, New York.

Google Scholar

[29] M.F. de Campos, J. A. de Castro: Materials Science Forum Vols. 727-728 (2012), pp.151-156.

Google Scholar

[30] M.F. de Campos, J. A. de Castro: Materials Science Forum Vols. 727-728 (2012), pp.146-150.

Google Scholar

[31] M.F. de Campos, F. J. G. Landgraf: Materials Science Forum Vols. 727-728 (2012), pp.169-174.

Google Scholar

[32] E. Feldtkeller. Z. Angew. Phys. Vol. 19 (1965), p.530.

Google Scholar

[33] C. R. Chang, C. M. Lee, J. S. Yang. Physical Review B Vol. 50 (1994) pp.6461-6464.

Google Scholar

[34] S. Chikazumi: Physics of Ferromagnetism. (2nd Edition, Oxford University Press, Oxford New York, 2009).

Google Scholar

[35] A. Aharoni: J. Appl. Phys. Vol. 51 (1980), p.3330.

Google Scholar