Dispersion of Carbon Nanotubes in AA6061 Aluminium Alloy Powder by the High Energy Ball Milling Process

Article Preview

Abstract:

Multi-wall carbon nanotubes (MWCNT), up to 2% in weight, were dispersed into AA6061 aluminium alloy by high-energy ball milling (HEBM) process, for further consolidation into extruded metal-matrix composites (MMC) bars. Three distinct routes were employed: the simple one step loading of materials inside the milling vials, an ultrasonically assisted dispersion of MWCNT and alloy powder into acetone prior to the milling, and the gradual introduction of MWCNT into the vials, during the milling process. Mixed powders obtained were evaluated in terms of the MWCNT integrity after HEBM, and the dispersion level obtained for several milling times. It was found that MWCNT remain relatively undamaged even for milling times up to 10 h, being embedded into the ductile alloy particles through the breaking/welding process during HEBM. However, shorter milling times result in poor dispersion of MWCNT in the milled powders. This tendency can be improved by using pre-milling mixture procedures, as the ultrasonically assisted wet dispersion of nanotubes and alloy powder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-95

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. T. Thostensona, Z. Renb, TW. Choua: Composites Science and Technology Vol. 61 (2001), p.1899.

Google Scholar

[2] M. Paradise, T. Goswami: Materials and Design Vol. 28 (2007), p.1477.

Google Scholar

[3] R. George, K.T. Kashyap, R. Rahul, S. Yamdagni: Scripta Materialia Vol. 53 (2005), p.1159.

DOI: 10.1016/j.scriptamat.2005.07.022

Google Scholar

[4] A. Guinier: Materials Science Forum Vols. 217-222 (1996), p.3.

Google Scholar

[5] E. Hornbogen: Journal of Light Metals Vol. 1 (2001), p.127.

Google Scholar

[6] J. Liu, M. Kulak: Materials Science Forum Vols. 331-337 (2000), p.127.

Google Scholar

[7] W.S. Miller, F.J. Humphreys: Scripta Metallurgica et Materialia Vol. 25 (1991), p.33.

Google Scholar

[8] H.J. Choi, J.H. Shin, D.H. Bae: Composites Science and Technology Vol. 71 (2011), p.1699.

Google Scholar

[9] A.M.K. Esawi, K. Morsi, A. Sayed, A. A. Gawad, P. Borah: Materials Science and Engineering A Vol. 508 (2009), p.167.

DOI: 10.1016/j.msea.2009.01.002

Google Scholar

[10] H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae: Scripta Materialia Vol. 59 (2008), p.360.

Google Scholar

[11] K. Morsi, A.M.K. Esawi, S. Lanka, A. Sayed, M. Taher: Composites: Part A Vol. 41 (2010), p.322.

Google Scholar

[12] L. Wang, H. Choi, J. Myoung, W. Lee. Carbon 47 (2009), 3427–3433.

Google Scholar

[13] R.P. Bustamante, I.E. Guel, P.A. Madrid, M.M. Yoshida, J.M.H. Ramírez, R.M. Sánchez: Journal of Alloys and Compounds Vol. 495 (2010), p.399.

Google Scholar

[14] A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka: Composites Science and Technology Vol. 70 (2010), p.2237.

DOI: 10.1016/j.compscitech.2010.05.004

Google Scholar

[15] A.M.K. Esawi, K. Morsi: Composites Part A Vol. 38 (2007), p.646.

Google Scholar

[16] A.M.K. Esawi, M.A. El Borady: Composites Science and Technology Vol. 68 (2008), p.486.

Google Scholar

[17] Baytubes® C 150 P Datasheet: Bayer Materials Science, edition 2008-03-10.

Google Scholar

[18] D. Poirier, R. Gauvin, R.A.L. Drew: Composites Part A Vol. 40 (2009), p.1482.

Google Scholar

[19] M.S. Dresselhausa, G. Dresselhaus, R. Saito, A. Jorio: Physics Reports Vol. 409 (2005), p.47.

Google Scholar

[20] C. Thomsen, S. Reich: Physical Review Letters Vol. 85 (2000), p.5214.

Google Scholar

[21] S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi: Chemical Physics Letters Vol. 402 (2005), p.422.

Google Scholar

[22] E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, A.A. Martin, C. Verıssimo: Carbon Vol. 44 (2006), p.2202.

Google Scholar