Synthesis of MCM-22 Zeolite Membrane on a Porous Alumina Support

Article Preview

Abstract:

Much interest has been aroused in the application in industrial processes using zeolite membrane, due to its crystalline structure, and narrow pore diameters. These features enable the continuous separation of mixtures based on differences in molecular size and shape and also based on different adsorption properties. This paper reports the synthesis of MCM-22 zeolite membrane, using the method of secondary growth. The MCM-22 zeolite was synthesized by the hydrothermal method and characterized by spectroscopy Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).The ceramic support (α-alumina) was prepared using the technique of forming powder and then subjected to the sintering temperature of 1400 °C/1h and characterized by XRD. The zeolite membrane preparation was performed by the method of secondary growth and characterized by XRD, SEM and mercury porosimetry. The obtained zeolite membrane could be confirmed by X-ray diffraction. From, the obtained SEM pictures it was possible to observe the formation of a homogeneous film on the zeolite surface of the ceramic support (α-alumina).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-278

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Shirazi, C. Lin And D. Chen: Desalination Vol. 250 (2010), p.236.

Google Scholar

[2] S. Aguado, J. Gascón, J.C. Jansen And F. Kapteijn: Microporous and Mesoporous Materials Vol. 120 (2009), p.170.

DOI: 10.1016/j.micromeso.2008.08.062

Google Scholar

[3] A. Huang, N. Wang And J. Caro: Journal of Membrane Science Vol. 389 (2012), p.272.

Google Scholar

[4] S. Wee, C. Tye and S. Bhatia: Separation and Purification Technology Vol. 63 (2008), p.500.

Google Scholar

[5] J. Coronas, and J. Santamaria, State-of-the-art in zeolite membrane reactors Topics in Catalysis, Department of Chemical and Environmental Engineering, University of Zaragoza Vol. 29 (2004), p.1.

DOI: 10.1023/b:toca.0000024926.42080.a7

Google Scholar

[6] C. Zhang, Z. Hong, J. Chen, X. Gu, W. Jin and N. Xu: Journal of Membrane Science Vol. 389 (2012), p.451.

Google Scholar

[7] W. Xiao, Z. Chen, L. Zhou, J. Yang, J. Lu and J. Wang: Microporous and Mesoporous Materials Vol. 142 (2011), p.154.

Google Scholar

[8] K.D. Pierotti and D.J. Julien Zeolite membrane and a process for the production thereof. U.S. Patent 6. 440. 885 B1, (2002).

Google Scholar

[9] R. Mallada and M. Menéndez: Synthesis, Characterization and Applications (20080.

Google Scholar

[10] A. Mitra: Method for manufacturing zeolite membrane. U. S. Patent 0. 160. 189 A1, (2008).

Google Scholar

[11] S. Li, V.A. Tuan, J.L. Falconer and R. D Noble: Microporous and Mesoporous Materials Vol. 53 (2002), p.59.

Google Scholar

[12] J. Caro, N. Noack, P. Kölsch and R. Schäfer: Microporous and Mesoporous Materials Vol. 38 (2000), p.3.

Google Scholar

[13] K. Makita, Y. Hirota, Y. Egashira, K. Yoshida, Y. Sasaki and N. Nishiyama: Journal of Membrane Science Vol. 372 (2011), p.269.

Google Scholar

[14] I. Domínguez, J. Pawlesa, A. Zukal, And J. Cejka: 4th International Feza Conference (FEZA) Paris, September 2 - 6 2008. Proceeding.. Paris 2008. (France).

Google Scholar

[15] J. Yang, J.Y. Yang, Y. Zhou, F. Wei, W.G. Lin and J.H. Zhu: Journal of Hazardous Materials Vol. 179 (2010), p.1031.

Google Scholar

[16] U. Díaz, V. Fornés and A. Corma: Microporous and Mesoporous Materials Vol. 90 (2006), p.73.

Google Scholar

[17] Y.J. He, G.S. Nivarthy, F. Eder, K. Seshan, J.A. Lercher: Microporous and Mesoporous Materials Vol. 25 (1998), p.207.

DOI: 10.1016/s1387-1811(98)00210-8

Google Scholar

[18] S.B.C. Pergher, A. Corma, V. Fornés: Qímica Nova Vol. 26 (6) (2003), p.795.

Google Scholar

[19] M. Arruebo, J. Coronas, Santamaría and Téllez: Microporous and Mesoporous Materials Vol. 115 (2008), p.1.

DOI: 10.1016/j.micromeso.2008.02.010

Google Scholar

[20] S. Khoonsap and S. Amnuaypanich: Journal of Membrane Science Vol. 367 (2011), p.182.

Google Scholar

[21] A.L.S. Marques, J.L.F. Monteiro and H.O. Pastore: Microporous and Mesoporous Materials Vol. 32 (1999), p.131.

Google Scholar

[22] S.L. Lawton, A.S. Fung, G.J. Kennedy, L.B. Alemany, C.D. Chang, G.H. Hatzikos, D.N. Lissy, M.K. Rubin, H.K.C. Timken, S. Steuernagel and D.E. Woessner: J. Phys. Chem. Vol. 100 (1996), p.3788.

DOI: 10.1021/jp952871e

Google Scholar

[23] S.B.C. Pergher, A. Corma and V. Fornés: Química Nova Vol. 26 (2003), p.795.

Google Scholar

[24] E.N. Coker, J.C. Jansen, F. Di Renzo, F. Fajula, J.A. Martens, P.A. Jacobs Jr. and A. Sacco: Microporous and Mesoporous Mat. Vol. 46 (2001), p.223.

DOI: 10.1016/s1387-1811(01)00298-0

Google Scholar

[25] A.V. Goretsky, L.W. Beck, S.I. Zones, M.E. Davis: Microporous and Mesoporous Mat. Vol. 28 (1999), p.387.

Google Scholar

[26] Q. Zhao, J.N. Chu, X. Yin, Z. Yang, C. Kong and A.J. Lu: Journal of Membrane Science Vol. 320 (2008), p.303.

Google Scholar

[27] R.C.O. Lima, H.L. Lira, G.A. Neves, M.C. Silva, C.D. Silva: Revista Eletrônica de Materiais e Processos Vol. 6 (3) (2011), p.163.

Google Scholar