Characterization of Elephant Grass Ash as a Potential Clay Ceramic Addition

Article Preview

Abstract:

The elephant grass (Pennicetum purpureum) is traditionally used both as fresh feedstock for cattle and, dried, as fuel for ceramic production in Campos dos Goytacazes, Brazil. In the present work the bottom ash generated after dry grass incineration in a ceramic furnace was characterized for a possible addition into red clay ceramics. The characterization comprised the ash morphology by laser microscopy, scanning electron microscopy coupled with EDS and thermal behavior by thermogravimetry as well as differential thermal analysis. These results indicated that the elephant grass ash could be added into a clay body not only as a fluxing agent but also to improve the particles compaction before firing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

585-590

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.T. Coelho: Mechanisms to implement the co-generation of electricity from biomass – A model for the state of São Paulo. Master (Dissertation). São Paulo, 1999. Universidade de São Paulo (USP). (SP). (In Portuguese).

DOI: 10.29381/0103-8559/20192904393-9

Google Scholar

[2] O. Seye: Analysis of the life-cycle applied to a structural ceramic productive process using elephant grass (Pennicetum purpureum) as energetic content. Master (Dissertation). Campinas, 2003. Universidade Federal de São Carlos (UFSCar). SP. (In Portuguese). SP.

DOI: 10.21115/jbes.v14.suppl2.p180-6

Google Scholar

[3] D. Lucas and C.T. Benatti: Revista Agronegócios e Meio-Ambiente Vol. 1 (3) (2008), p.405.

Google Scholar

[4] M. Dondi, M. Marsigli and B. Fabbri: Tile & Brick International 13(4) (1997), p.218.

Google Scholar

[5] M. Dondi, M. Marsigli and B. Fabbri: Tile & Brick International 13(4) (1997), p.302.

Google Scholar

[6] D.G. Pinatti, R.A. Conte, M.C. Borlini, B.C. Santos, I. Oliveira, C.M.F. Vieira and S.N. Monteiro: Journal of the European Ceramic Society vol. 26 (3) (2006), p.305.

DOI: 10.1016/j.jeurceramsoc.2004.11.009

Google Scholar

[7] C.M.F. Vieira and S.N. Monteiro: Rev. Materia Vol. 14 (2009), p.881.

Google Scholar

[8] C.M.F. Vieira, M.C. Borlini and S.N. Monteiro: Industrial Ceramics Vol. 25 (2006), p.23.

Google Scholar

[9] A.M.F. Silva, L.S. Lovise, S.N. Monteiro and C.M.F. Vieira: Mater. Sci. Forum Vols 727-728 (2012), p.993.

Google Scholar

[10] W.D. Kingery, H.K. Bowen and D.R. Uhlmann: Introduction to Ceramics. (John Wiley & Sons, New York, 1975).

Google Scholar

[11] C.M.F. Vieira, L.F.T. Queiroz and S.N. Monteiro: Mater Sci. Forum Vols 660-661 (2010), p.801.

Google Scholar

[12] S.N. Monteiro and C.M.F. Vieira: Ceramics International Vol. 30 (2004), p.381.

Google Scholar

[13] R.R. Menezes, G.A. Neves; H.C. Ferreira: Revista Brasileira de Engenharia Agrícola e Ambiental Vol. 6 (2) (2002), p.303.

Google Scholar

[14] B.J. Skrifvars, B. Rainer and H. Mikko: Fuel Processing Technology Vol. 56 (1998), p.55.

Google Scholar

[15] P.E. Praes and M.M. da Silva: Serie de Tecnologia Mineral, CETEM/CNPq, Rio de Janeiro Vol. 71 (1995), p.5.

Google Scholar

[16] S.A. Silva, A.G. Souza, M.M. Conceição, A.L.S. Alencar, S. Prasad and J.M.O. Cavalheiro: Química Nova Vol. 24 (4) (2001), p.460.

Google Scholar